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A B S T R A C T   

Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple 
quantum computing experiments and the worst technology for building large scale quantum computers that has 
ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s 
quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further 
progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now 
largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of 
developing methods that can be applied in other more scalable technologies and within conventional NMR. 
However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle 
demonstrations of simple quantum information protocols.   

1. Introduction 

Quantum information processing (QIP) is the use of explicitly 
quantum mechanical systems, exhibiting phenomena such as super
position and entanglement, to perform information processing tasks. 
Traditionally the field can be divided into two broad areas: quantum 
computation is about the performance of computational tasks more 
efficiently than is possible for any classical computer [1], while quantum 
communication largely considers tasks which are simply impossible by 
purely classical means [2]. Closely related to quantum computation is 
quantum simulation, in which one quantum mechanical system is used 
to model, and thus study, the behaviour of another [3]. The distinction 
between computation and simulation is not always simple or clear [4], 
and the design of general-purpose quantum simulators is an active area 
[5]. Another growing area is quantum sensing, in which non-classical 
states of light or atoms are used to achieve a measurement precision 
beyond the standard quantum limit [6]. 

Over the last forty years QIP, and particularly quantum computing, 
has moved from a purely theoretical domain explored only by a few 
committed enthusiasts to a thoroughly mainstream area of science 
[7–15]. NMR experiments have played a small but significant role in 
this: early discussions of how NMR quantum computers could be 
implemented [16–20] were soon followed by the first implementations 
of complete quantum algorithms [21–24]. Indeed for a few years NMR 
was in many ways the leading quantum computation technology, 
culminating in the first implementation of Shor’s quantum factoring 
algorithm [25]. This rapid progress was, however, matched by a cor
responding concern: the difficulty of preparing NMR spin systems in 
pure states, a consequence of the tiny energy gap for nuclear spin levels, 

almost rules out attempts to build large scale devices [26,27]. Even if 
this were resolved many issues would remain, such as the difficulty of 
designing spin systems with very large networks of coupled spins which 
permit sufficiently selective excitation [28]. For these reasons NMR 
quantum computing has been described as a demonstration technology 
[29], and as a field for developing tricks and techniques which will find 
their final applications in other fields [30]. 

The role of NMR in studies of quantum communication has been even 
more limited for two basic reasons. Simple quantum communication 
protocols, such as BB84 quantum cryptography [31], typically rely on 
the effects of projective measurements on single quantum systems, and 
the absence of true projective measurements in ensemble NMR systems 
makes this essentially impossible. More advanced quantum communi
cation protocols, such as E91 quantum cryptography [32] and quantum 
teleportation [33] rely on distributing entanglement over significant 
distances [34,35]. This is not really possible in NMR, where the entan
glement is confined within a single molecule, and although the tele
portation circuit has been demonstrated in a three spin system [36], the 
information was only moved over a few angstroms. 

The situation for quantum sensing with NMR is the reverse: here 
significant results have been demonstrated for entanglement-enhanced 
magnetic field sensing [37–39], but these experiments are in reality 
little more than relabelled versions of the traditional HMQC [40] and 
HSQC [41] experiments, reflecting the close relationship between 
Schrödinger Cat states and maximal multiple quantum coherences [42]. 

1.1. Structure and scope 

In my first review in this journal [43] I provided a general 
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introduction to quantum computation and the main methods used for 
implementing it in NMR spin systems, while my second review [44] 
sought to provide a fairly complete summary of all the major experi
mental approaches in use at that time. These two reviews bracket a very 
busy period in which rapid progress was made and a large number of 
papers were published by many different research groups. Since 2011 
the field has become quieter, with many of the remaining researchers 
tending to concentrate on a small number of particular topics. In this 
review I will begin with a brief introduction, followed by a summary of 
popular spin systems, and will then concentrate on some areas of current 
interest. These mostly relate to quantum control, that is the design of 
composite pulses, shaped pulses, and pulse sequences, to perform 
particular transformations of quantum states [45]. 

Throughout the text I will assume familiarity with conventional NMR 
methods and with elementary quantum mechanics, but no detailed fa
miliarity with quantum information theory. I will, however, discuss 
some conventional NMR themes in the context of quantum information, 
in part to clarify how the two notations interrelate, but also to indicate 
some limitations on the situations in which these conventional NMR 
techniques can be applied. 

2. DiVincenzo criteria 

The suitability of any physical system for building a quantum com
puter is traditionally assessed using the five DiVincenzo criteria [46], 
briefly summarised in Table 1. Although this list is arguably not the best 
way to think about realistic proposals [47], it does provide a simple 
structure enabling different physical technologies to be easily compared. 
As we will see for NMR, the central conclusion is that while the con
struction of small demonstration systems is straightforward, there are 
enormous difficulties in scaling these up to the sizes required for a 
genuinely useful device. 

1. A scalable physical system with well characterized qubits. The basic 
approach in NMR is simple, using a single spin-12 nucleus in a small 
molecule to represent each qubit. I will mostly not consider proposals 
which use electron spins [48–50] or which combine electron and nuclear 
spin qubits [51–53]. I will also not consider proposals involving high- 
spin nuclei, such as schemes that represent a qutrit using a spin-1 nu
cleus in a liquid crystal solvent [54,55] or schemes that use the four 
levels of a spin-32 nucleus [56–58] or the eight levels in a spin-72 nucleus 
[59,60] to represent two or three qubits in one system. Similarly, I will 
largely only consider small molecules in isotropic liquids, rather than 
systems in the solid state [61–65] or systems with partial local ordering 
induced by liquid crystal solvents [66–78]. 

As discussed in Section 4, it is straightforward to find suitable spin 
systems to represent small numbers of qubits, but the difficulty increases 
sharply with the number of spins required. This is the first reason why 
conventional NMR does not provide a realistic route to a useful quantum 
computer. 

2. The ability to initialize the state of the qubits to a simple fiducial state, 
such as |000…〉. In many approaches to quantum computing this is done 
by some sort of cooling process: sometimes by direct cooling to the en
ergetic ground state, but more frequently by indirect approaches, such 

as optical pumping, which allow a chosen state to be selectively pre
pared [79]. Cooling is a generally impractical approach for NMR 
quantum computing, not because the temperatures required (of the 
order of mK) are unattainable, but rather because the sample must 
normally be kept in the liquid state to obtain the desired motionally 
averaged Hamiltonian. While a wide range of signal enhancement ap
proaches have been demonstrated [80], which reduce the effective spin 
temperature while keeping the molecular lattice close to room temper
ature, the enhancements obtainable are not normally high enough to 
reach the desired pure spin states [28]. The sole exception to this is the 
use of para-hydrogen [81], but as yet this has only been used to produce 
pure states for two-spin systems [82]. 

Instead of preparing pure states the standard approach for NMR 
quantum computing is to prepare pseudo-pure states, also called effective 
pure states [16–20], as discussed in Section 8. This process cannot be 
performed scalably [26,27], once again limiting NMR QIP to relatively 
small spin systems. 

3. Long relevant decoherence times, much longer than the gate operation 
time. In NMR implementations this means that the slowest interactions 
used to implement gates, usually the scalar couplings between spins, 
must be fast compared with the fastest relaxation time, usually taken as 
the spin–spin relaxation time, T2, although in reality the relaxation 
times of multiple quantum coherences may be more relevant. Naively 
this means that coupling patterns must be well resolved, but this is a 
sufficient rather than a strictly necessary condition, as inhomogeneous 
broadening, which makes T*

2 less than T2, can be refocused [83]. 
However it is important to realise that much longer in this require

ment means above the fault tolerant threshold [84]. This threshold de
pends on the error correction code chosen and the overhead one is 
prepared to tolerate [85], but in practice a ratio of at least 100 is 
essential and a factor closer to 10,000 is preferable. Even the lower limit 
is challenging, and the higher ratio is far out of reach, and so performing 
extended quantum computations with NMR is not currently possible. 

4. A “universal” set of quantum gates. Gate universality, which is the 
ability to approximate any desired evolution using a network of gates 
from some finite set, is a much studied topic in QIP. Very early papers 
assumed that three-qubit gates would be required [86], but a key early 
result was that two-qubit gates suffice [87,88], and indeed that almost 
any two-qubit gate is universal [89,90]. More practically the combina
tion of a universal set of single-qubit gates and any non-trivial two-qubit 
gate, such as the controlled-NOT gate [91], is universal [92]. It can also 
be shown that two particular gates, traditionally taken as the Hadamard 
gate and the fourth root of Z gate, suffice to form a universal set of single- 
qubit gates [93]. More importantly for NMR implementations, the set of 
single-spin rotations around axes in the xy-plane, corresponding to the 
set of spin-selective pulses, combined with free evolution in the presence 
of scalar coupling interactions, is universal [94]. 

As hinted at above, one central problem for gate implementation in 
NMR QIP is the problem of spin-selective excitation. Most other pro
posals for implementing quantum computation ultimately rely on some 
form of spatial selection, in which different qubits are implemented 
using physical systems in different regions of space, but this is not 
possible in NMR systems, which are built around a macroscopic 
ensemble of rapidly tumbling systems. Instead the qubits are distin
guished using their different resonance frequencies. 

Such frequency selection is trivial in heteronuclear spin systems, but 
there are only a finite number of spin-12 nuclei available. In homonuclear 
spin systems the chemical shift interaction provides sufficient dispersion 
to distinguish small numbers of qubits, but the finite range of chemical 
shifts once again limits this approach to a fairly small number of spins of 
any one nuclear species [28]. Some common homonuclear and hetero
nuclear spin systems are discussed in Section 4, and the design of robust 
spin-selective rotations is a central feature of Sections 5–7. 

A second central problem is the design of refocusing networks to 
remove unwanted spin–spin couplings. Although free evolution under 

Table 1 
A summary of the 5 DiVincenzo criteria and how they might be met 
in NMR systems. Although all 5 criteria are met well enough for 
simple demonstrations, none of them are met in a genuinely scalable 
way.  

Criterion NMR implementation 

1. qubits spin-
1
2

nuclei 

2. initialisation pseudo-pure states 
3. low decoherence long T2 

4. logic gates pulses and delays 
5. measurement NMR spectrum  
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the natural background Hamiltonian is formally universal when com
bined with single-qubit gates, it does not normally correspond naturally 
to a conventional logic gate. More fundamentally NMR quantum com
puters differ from most other designs in that these logic gates are “al
ways on”, and have to be turned off when they are not required [95]. 
Approaches for doing this efficiently are discussed in Section 10. Related 
to this is the problem of turning off couplings to spins outside the spin 
system used for information processing. In conventional NMR this is 
usually achieved by decoupling, but within QIP it can be more appro
priate to use dynamical decoupling, in which the refocusing pulses are 
applied to the system (the spins of interest) rather than the surroundings 
(their coupling partners), as explored in Section 11. 

5. A qubit-specific measurement capability. Qubit measurement is 
obviously important as there is no point in performing a computation if 
the result cannot be read out in some way. However quantum mea
surement is very different from classical measurement. In the classical 
world a measurement can be thought of as revealing a pre-existing state 
of a classical object, and can be performed without affecting the state, 
but quantum measurement is nothing like this [10,11]. Every mea
surement process has an associated set of outcomes, which form a 
complete orthonormal basis for the system, and the result of a mea
surement is to project the system at random into one of these possible 
outcome states, with the outcome probabilities given by the square 
moduli of the corresponding amplitudes. For a measurement performed 
in the computational basis only these basis states can be measured non- 
intrusively: any measurement on a superposition state will return one of 
the contributing basis states at random, with any entanglement in the 
superposition reflected in correlations between different bits in the 
outcome. 

In NMR quantum computing, measurement is achieved by observing 
the NMR spectrum, either directly or after applying excitation pulses to 
one or more spins. This is not a true quantum measurement, but rather 
the determination of an ensemble averaged expectation value for some 
traceless observable [17]. If the spin system is in an eigenstate before the 
measurement then this state can be identified from the intensities of 
lines in appropriate multiplets [44], and in some special cases the 
ensemble nature of NMR can be useful [96]. However, for algorithms 
which result in a superposition of possible answers, one of which is 
selected at random by the measurement process, ensemble averaged 
results are not useful, and in NMR implementations of such algorithms it 
is common to note simply that the observed NMR signal matches the 
simulated predictions [25]. For quantum protocols that result in 
entangled states [97], which can be related to multiple quantum co
herences [43,94], the outcome may be particularly difficult to monitor 
directly, although in some cases useful simple measurements can be 
found [82,98]. 

One way to overcome this is to use quantum state tomography, in 
essence measuring enough different observables that it is possible to 
completely reconstruct the density matrix, or at least its traceless part, 
the deviation density matrix [20,99–102]. Several methods have been 
used to increase the efficiency of quantum state tomography in NMR 
[103–105], and more generally [106–108], but the exponential growth 
in the number of elements in the full density matrix makes complete 
reconstructions very challenging for large spin systems. 

Furthermore, the lack of projective measurements means that qubits 
cannot be easily reset. Quantum error correction protocols [109–111] 
depend on access to ancilla qubits in a well-defined state, typically |0〉, to 
record the errors which have occurred. The error correction process 
needs to be carried out repeatedly, which requires either that the an
cillas are reset to their initial state or a continuous supply of fresh an
cillas is available. Although single rounds of error correction have been 
demonstrated in NMR [112,113], the absence of a reset process renders 
effective error correction difficult in NMR systems [114]. 

3. States 

There is an exact correspondence between the pure states of an iso
lated spin-12 nucleus and a qubit, and both are commonly described using 
the Bloch sphere picture. For a single qubit a general state can be written 
as 

|ψ〉 = c0|0〉+ c1|1〉 (1)  

where c0 and c1 are complex numbers, subject to the normalisation 
constraint that 

|c0|
2
+ |c1|

2
= 1. (2)  

Given an ensemble of identical copies of this system experiments can be 
performed which provide information on the magnitudes of c0 and c1, 
and on their relative phase, but there is no method whatsoever to obtain 
any information on the absolute phases of c0 and c1. Equivalently, the 
state |ψ〉 is completely indistinguishable from the state 

|ψ′〉 = eiγ |ψ〉 = eiγc0|0〉+ eiγc1|1〉, (3)  

so the global phase γ has no physical meaning. One common approach is 
to choose γ so that the amplitude of the |0〉 component is real and pos
itive, which combined with normalisation enables a single qubit to be 
described as 

|ψ〉 = cos(θ
/

2)|0〉+ eiϕsin(θ
/

2)|1〉, (4)  

with 0⩽θ⩽π and 0⩽ϕ < 2π. Thus any state of a single qubit can be 
represented using spherical polar coordinates as a point on the surface of 
a unit sphere, which is the Bloch sphere. 

Exactly the same approach can be used within NMR, with the 
eigenstates |α〉 = |+1

2〉 and |β〉 = | − 1
2〉 of a spin-12 nucleus playing the 

roles of |0〉 and |1〉, and the Bloch vector simply connecting the origin 
and an appropriate point on the Bloch sphere. The main difference is 
that the states used in NMR are mixed states, and so strictly lie within the 
Bloch sphere rather than on its surface. It is, however, common to ignore 
this, as discussed below. The use of NMR operator notation also leads to 
the Bloch vector normally being described in Cartesian notation rather 
than spherical polars. 

3.1. Mixed states 

The states described in Eq. 1 are pure states, which correspond to the 
quantum system being in a single well defined state. This state need not 
be an eigenstate, but it is unitarily equivalent to an eigenstate, as there 
will always be some unitary transformation that interconverts |0〉 and 
|ψ〉. A more general possibility is that the qubit can be in a mixed state, 
which is not a single well defined state but rather a probabilistic mixture 
of such states. 

Mixed states cannot be described using kets, but are instead 
described using density matrices of the form 

ρ =
∑

j
pj|ψj〉〈ψj|, (5)  

where the pj are probabilities, and so must be real numbers with 0⩽pj⩽1 
and 

∑
jpj = 1. This form shows that density matrices must be Hermitian 

(that is ρ = ρ†), and so must have an orthonormal eigenbasis [10]. They 
must also be positive semidefinite, which means that their eigenvalues 
must be non-negative, that is positive or zero. Two important special 
cases are pure states, which have a single eigenvalue equal to 1 with the 
rest being 0, and the maximally mixed state, which is an equal mixture of 
all the eigenstates of the system. For a qubit this takes the form 
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1
2

E =

⎛

⎜
⎜
⎝

1
2

0

0
1
2

⎞

⎟
⎟
⎠. (6)  

For a single qubit the situation is particularly simple. Considering the 
state in its eigenbasis it is clear that any mixed state can be written in the 
form 

ρ = p|ψ〉〈ψ | + (1 − p)|ψ⊥〉〈ψ⊥|, (7)  

for some state |ψ〉, where 

|ψ⊥〉 = c*
1|0〉 − c*

0|1〉 (8)  

is the state orthogonal to |ψ〉, and we can choose the states such that 
|ψ〉 has a probability equal to or greater than that of |ψ⊥〉, so that 12⩽p⩽1, 
with a pure state corresponding to p = 1. In particular the maximally 
mixed state can be decomposed not just as an equal mixture of |0〉 and 
|1〉, but also as an equal mixture of any state and its orthogonal partner, 

1
2

E =
1
2
|ψ〉〈ψ | + 1

2
|ψ⊥〉〈ψ⊥|. (9)  

This allows Eq. 7 to be rewritten as 

ρ = 2(1 − p)
1
2

E+(2p − 1)|ψ〉〈ψ|, (10)  

corresponding to a mixture of the maximally mixed state and an excess 
population of |ψ〉. This means that every state of a single qubit is a 
pseudo-pure state. Since the maximally mixed state gives no signal in 
NMR experiments the behaviour of ρ is almost indistinguishable from 
that of the corresponding pure state |ψ〉, differing only in a reduced 
signal intensity. For this reason it is common within NMR to treat mixed 
states of single spins as if they were pure states. However it is necessary 
to be much more careful when describing systems with multiple spins, as 
discussed in Section 8. 

Within conventional NMR a different but related description is nor
mally used. The excess component can be rewritten using 

|ψ〉〈ψ| =
1
2
(|ψ〉〈ψ | + |ψ⊥〉〈ψ⊥|) +

1
2
(|ψ〉〈ψ| − |ψ⊥〉〈ψ⊥|)

=
1
2

E + Iψ

(11)  

where Iψ is an angular momentum operator parallel to |ψ〉, defined by 

Iψ = sinθcosϕIx + sinθsinϕIy + cosθ Iz, (12)  

with Cartesian components corresponding to the Bloch vector. Thus 

ρ =
1
2

E +(2p − 1)Iψ , (13)  

where the fact that Iψ is traceless ensures that the maximally mixed term 
is always 12 E to get the correct trace. The conventional NMR approach is 
then to drop not only the maximally mixed state but also the term 
describing the size of the polarisation, here written as 2p − 1, or equiv
alently to assume that p = 1, and so describe the spin state as Iψ . While 
this simplified approach can be highly successful it must be remembered 
that angular momentum operators are not proper density matrices, as 
they are not positive semidefinite with unit trace, and so cannot always 
be naively substituted into formulae derived for density matrices. 

3.2. Fidelities 

The concept of state fidelity is an important one in quantum infor
mation theory, providing a measure of how similar two quantum states 
are. For two pure states it is defined simply as the square modulus of the 

inner product, 

Fψ ,ϕ = |〈ψ|ϕ〉|2 = 〈ψ |ϕ〉〈ϕ|ψ〉, (14)  

which has limiting values F = 1 when |ϕ〉 = |ψ〉 and F = 0 when |ϕ〉 =

|ψ⊥〉. This definition extends by linearity to give the fidelity between a 
pure state and a mixed state, 

Fψ ,ρ = 〈ψ|ρ|ψ〉. (15)  

The extension to comparing two mixed states, ρ and σ, is more compli
cated, and the naive generalisation Tr(ρσ) is not suitable. The correct 
fidelity in this case is the Uhlmann–Jozsa fidelity [115,116] which is 
defined as 

Fρ,σ =
[
Tr
(⃒
⃒
⃒
̅̅̅ρ√ ̅̅̅

σ
√ ⃒
⃒
⃒

) ]2
, (16)  

where the modulus of an operator is defined by 

|A| =
̅̅̅̅̅̅̅̅
AA†

√
. (17)  

Note that all proper density matrices are Hermitian and positive semi
definite, and so ̅̅̅ρ√ and 

̅̅̅
σ

√
exist, and are also Hermitian and positive 

semidefinite. This leads to the more usual form 

Fρ,σ =
[
Tr
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

̅̅̅ρ√ σ ̅̅̅ρ√
√ )]2

. (18)  

The fearsome appearance of this equation, especially to readers who are 
unaccustomed to matrix square roots, has led to many attempts to find 
simpler formulae [117,118], but none of these fulfil all of the six 
properties achieved by the Uhlmann–Jozsa fidelity [116], four of which 
are essential and two of which are highly desirable. In particular a fi
delity should lie between 0 and 1, achieving a value of 1 if and only if 
ρ = σ, should be symmetric between ρ and σ, should be invariant under 
unitary transformations, and should reduce to the form of Eq. 15 when ρ 
or σ is pure. 

The naive generalisation Tr(ρσ) does not meet these requirements: 
consider the simple example 

ρ =

⎛

⎜
⎜
⎝

3
4

0

0
1
4

⎞

⎟
⎟
⎠ (19)  

for which Tr(ρ2) = 5
8, showing that this form does not reach a value of 1 

for ρ = σ. The highest value which can be reached by any proper density 
matrix is achieved by 

σ =

(
1 0
0 0

)

(20)  

for which Tr(ρσ) = 3
4. It is also impossible to “patch up” this definition 

without introducing other problems. In contrast the Uhlmann–Jozsa fi
delity behaves correctly. This can be seen by calculating the fidelity 
between Eq. 19 and a general mixed state written in NMR notation(see 
Fig. 1) 

σ =
1
2

E + r
(
sinθcosϕ Ix + sinθsinϕ Iy + cosθ Iz

)
(21)  

for which the fidelity is easily seen to be independent of ϕ, so without 
loss of generality we can assume ϕ = 0. Plotting this fidelity as a func
tion of r and θ, as shown in Fig. 2, gives a clear maximum at r = 1

2 and θ =

0, where a level of 1 is achieved, exactly as expected. 
Thus it appears that the square roots cannot be entirely avoided, but 

it is possible to recast the Uhlmann–Jozsa fidelity into a different form 
which is much easier to calculate numerically. In particular it can be 
shown [119] that provided ρ and σ are proper density matrices then the 
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form 

Fρ,σ =
[
Tr
( ̅̅̅̅̅ρσ√ ) ]2 (22)  

can be used instead. Furthermore it is not actually necessary to explicitly 
find ̅̅̅̅̅ρσ√ as only its trace, which is equal to the sum of its eigenvalues, is 
required, and it can be shown that these eigenvalues are equal to the 
square roots of the eigenvalues of ρσ. Using this efficient approach is it 
possible to speed up the computation of the Uhlmann–Jozsa fidelity by 
around a factor of ten [119]. 

4. Choice of spin system 

When choosing a spin system for implementing an NMR quantum 
computation it is necessary to find a molecular system containing the 
right number of spin-12 nuclei in a coupled network. It is not necessary 
that all the nuclei be directly coupled, but it is necessary that they all be 
connected directly or indirectly [120] by some chain of sufficiently large 
couplings. 

The conceptually simplest approach is to use an entirely hetero
nuclear spin system, as this makes selective addressing trivial, but this is 
limited by the small number of suitable spin-12 nuclei, and so many 
implementations are at least partly homonuclear, containing two or 
more spins of a particular nuclear species. With homonuclear systems a 
key decision is whether to work with all the spins of a given type in the 
same rotating frame, or to assign a separate frame to every spin, 
sometimes called abstract reference frames [42]. This decision can be 
sidestepped when there are only two spins of any given type, as in this 

case the two abstract frames will align at stroboscopic intervals [21]. In 
principle the same decision must be made for fully heteronuclear sys
tems, but here the universal practice is to assign each nuclear species its 
own rotating frame, usually at or close to resonance with the single spin 
of that type. 

A further consideration in homonuclear systems is whether the 
spin–spin couplings can be treated as weak. In practice this point is 
frequently ignored and a weak-coupling Hamiltonian is regularly 
assumed even when deviations are clearly visible in the NMR spectrum. 
This is not, of course, a concern in heteronuclear systems. 

4.1. Choosing nuclei 

While there are a large number of spin-12 nuclei which could in 
principle be used, the choice in practice is strongly influenced by easy 
availability of certain chemical systems [121] and of commercial NMR 
equipment. There are six spin-12 nuclei which occur with near 100% 
natural abundance, but of these only three (1H, 19F, and 31P) have the 
chemical versatility to be easily included in small organic molecules, 
with the other three (89Y, 103Rh, and 169Tm) being metals. To this short 
list can be added 13C and 15N, reflecting the relatively easy availability 
of selective isotopic labelling and the wide availability of suitable dou
ble, triple and quadruple resonance probes for chemical and biochem
ical studies. In various combinations these five nuclei completely 
dominate spin-12 quantum computing experiments. In one extreme case a 
fully heteronuclear five-qubit computer was designed using all five 
nuclei [122,123], which required the use of a custom six-channel probe 
(including the 2H lock channel) [122]. 

Use of other spin-12 nuclei has been far more limited. A wide range of 
exotic spins have been discussed from a theoretical perspective but 
without experimental demonstrations [124,125]. The most important 
experimental example is 29Si, which has been used in star-topology 
systems, in which a single 29Si nucleus is surrounded by 12 [38] or 
even 36 [126,127] 1H nuclei. By making all NMR measurements at the 
29Si frequency the experiment is only sensitive to the 5% of the sample 
containing a 29Si nucleus, thus automatically selecting a labelled subset 
of molecules. 

This trick cannot be easily extended to systems containing two or 
more such nuclei, limiting its applicability. A system containing two 
silicon atoms will appear in the 29Si spectrum as an equal mixture of the 
two different “singly labelled” isotopomers, with much weaker signals 
from the rare doubly labelled compound. As each isotopomer gives rise 
to its own multiplet it is simple to separate the two signals, permitting 
easy study of either of the two spin systems. This approach is quite 
widely used with natural abundance 13C to extend a spin system 
comprising 1H or 19F nuclei in an organic molecule, in effect adding a 
single 13C nucleus without explicit labelling. 

As well as considering the spin-system used to represent quantum 
information it is also necessary to ensure that any other spins in the 
molecule can be ignored. Clearly spin-0 nuclei, such as 16O, can be 
entirely ignored, and high spin nuclei, such as 2H, 14N, and 35/37Cl, can 
be largely ignored, as their rapid quadrupolar relaxation acts to remove 
the effects of any couplings to the spin-12 nuclei of interest. Furthermore, 
labile 1H nuclei can be easily exchanged for 2H by dissolving in D2O. 

It is also possible to ignore spin-12 nuclei which are not coupled to the 
main spin system: although such spins are visible in NMR spectra they 
will not affect the evolution of the spins of interest. Here “not coupled” 
really means having a coupling constant low enough to ignore, which is 
a practical question rather than a matter of principle. For example, the 
fully heteronuclear five-qubit computer mentioned above also contains 
two N-methyl and two O-ethyl groups which are weakly coupled to the 
main system. Most of these couplings are under 1Hz, and can be ignored, 
but the largest long range couplings were decoupled using selective 
pulses [122]. 

Fig. 1. Representing a pure state of a single qubit as a point on the surface of 
the Bloch sphere using spherical polar coordinates. This is entirely equivalent to 
the Bloch sphere used in conventional NMR, where Cartesian coordinates are 
more common. 

Fig. 2. The Uhlmann–Jozsa fidelity between the target state, Eq. 19, and the 
general state, Eq. 21 for the case ϕ = 0, plotted over the range 0⩽r⩽1, and 
0⩽θ⩽π. Contours are plotted at fidelities of 0.9, 0.99, 0.999, and 0.9999, 
revealing a clear maximum at r = 0.5, θ = 0, corresponding to ρ = 1

2 E + 1
2Iz. 
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4.2. Systems with two spins 

A two-spin system can only be either homonuclear or fully hetero
nuclear, and both approaches have proved popular. The first NMR 
quantum computing experiments were performed using either a pair of 
1H nuclei in cytosine dissolved in D2O [21,24,96] or the combination of 
a 1H and a 13C nucleus in 13C labelled chloroform dissolved in acetone- 
d6 [22,23,128] or CDCl3 [129], see Fig. 3. 

Many other HH systems have been studied, including 2,3-dibromo
thiophene [18], uracil [130], 5-nitrofuraldehyde [131–133], coumarin 
[131], and 5-bromothiophene-2-carbaldehyde [134], as well as a range 
of systems synthesised from para-hydrogen [81,82,135,136]. Systems 
involving a pair of coupled 31P nuclei have also been explored [137]. 

For heteronuclear systems the choice of combining 1H with 13C is 
very obvious, but the early choice of chloroform has some disadvantages 
related to the relaxation of the 13C nucleus. This has a shortened T2, 
arising from scalar relaxation of the second kind [138] caused by rapid 
quadrupolar relaxation of directly bonded 35/37Cl nuclei, which limits 
the number of quantum gates that can be performed. This is combined 
with a very long T1, limiting the repetition rate if experiments are started 
from the thermal equilibrium state. A popular alternative HC system 
with slightly more balanced relaxation times is provided by labelled 
sodium formate in D2O [139–143], or the closely related formic acid 
[144], see Fig. 3. Experiments have also been demonstrated with 
labelled dimethylformamide [105], where the methyl protons can sim
ply be ignored. However, chloroform remains the overwhelmingly 
popular choice [145–179]. 

Other heteronuclear combinations are less popular, perhaps just 
because suitable probes are not quite so widely available. The combi
nation of 1H and 19F has been demonstrated in 5-fluorouracil [180], a 
convenient and readily available heteronuclear replacement for uracil. 
Perhaps more interesting is the combination of 1H and 31P, which was 
originally demonstrated in phosphonic acid [181,182], which has a 
particularly large scalar coupling (almost 650Hz) between 31P and the 
directly bonded 1H. This system has subsequently been adapted to build 
a tabletop two-qubit NMR device, called SpinQ Gemini [183,184], based 
around dimethylphosphite, where the one bond coupling of almost 
700Hz dominates over the long-range couplings to the methyl protons. 
An even larger coupling, over 850Hz, is found between the directly 
bonded 19F and 31P nuclei in sodium fluorophosphate [185–188]. 

4.3. Systems with three spins 

A wide range of different three-spin systems have been explored. 
Fully homonuclear systems (Fig. 4) have been led by studies of the three 
13C spins in labelled alanine [101,112,120,189–210], but three 1H spins 
in 2,3-dibromopropanoic acid [211–213] or in chlorostyrene [214,215] 
or three 19F spins in bromotrifluoroethylene [100], 2,3,4-trifluoroani
line [216], 4-bromo-1,1,2-trifluoro-1-butene [217], or iodotrifluoro
ethylene [218–234] have also proved popular. Although 19F probes are 
less widely available than 1H, the wide range of chemical shifts and the 
large size of the scalar couplings makes 19F a tempting choice [100]. 

Among fully heteronuclear implementations (Fig. 5) the most 

popular approach is to combine 1H, 13C, and 19F nuclei in 13C labelled 
dibromofluoromethane [187,188,235–240], ethyl 2-fluoroacetoacetate 
[241,242], or diethyl-fluoromalonate [243–275]. Although some 
studies of diethyl-fluoromalonate explicitly refer to 13C labelling 
[250,266] it appears that some other experiments were performed with 
unlabelled samples, although it is only rarely that this is clearly 
described [243]. 

Between the extremes of homonuclear and fully heteronuclear sys
tems lie the mixed systems, with two spins of one nuclear type and the 
third of another. This approach allows the unique spin to be directly 
controlled while stroboscopic methods can be applied to the two spins of 
the same species, and can allow a convenient distinction between 
different roles for particular spins, for example for input and output. A 
HHF system has been explored in 4-fluoro-7-nitro-benzofuran 
[131,276], while HHP has been studied using E-(2-chloroethenyl) 
phosphonic acid [277] and HHN using 15N labelled acetamide 
[278,279]. Among doubly labelled compounds the most popular 
approach has been to use the HCC system, usually in trichlororethene 
[36,112,99,280–290] but sometimes in tris(trimethylsilyl) silane- 
acetylene [291–294] or in propyne [295]. 

4.4. Systems with four spins 

With four spins the range of possibilities becomes very large, and 
here I list only some notable examples. An early experiment used 1- 
chloro-2-nitrobenzene as an HHHH system [18], but only used this to 
control three qubits to demonstrate a Toffoli gate. Similar results were 
shown using 2,3-difluoro-6-nitrophenol as an HHFF system 
[133,276,296] and 13C labelled alanine as an HCCC system [215,297], 
with selective decoupling of the methyl protons to simplify the spin 

Fig. 3. Popular two qubit heteronuclear systems include (a) chloroform and (b) 
the formate anion, both with 13C labelling. Nuclei used as qubits are shown in 
red boldface, and the other nuclei can be neglected. 

Fig. 4. Popular three qubit homonuclear systems include (a) 13C labelled 
alanine and (b) iodotrifluoroethylene. The three main qubits are shown in red 
boldface, but these molecules have also been extended to four qubit partly 
heteronuclear systems by including the nuclei shown in blue boldface. 

Fig. 5. Popular three qubit heteronuclear systems include (a) dibromofluoro
methane and (b) diethyl-fluoromalonate, here drawn to emphasise the simi
larity of the two systems. Note that the protons in the ethyl groups are not 
significantly coupled to the main qubits and give signals well separated from 
the 1H qubit multiplet. 

J.A. Jones                                                                                                                                                                                                                                        



Progress in Nuclear Magnetic Resonance Spectroscopy 140-141 (2024) 49–85

55

system. More sophisticated experiments were performed using glycine 
as an HNCC spin system [298], which required not only 13C and 15N 
labelling but also selective replacement of one of the two Cα protons by 
deuterium. 

Four qubit experiments have, however, become dominated by two 
systems. The first is an extension of the FFF system iodotrifluoroethylene 
to make a four spin system by using a 13C spin [299–320], apparently at 
natural abundance. The second is the CCCC system (Fig. 6) provided by 
fully 13C labelled crotonic acid (trans-but-2-enoic acid) [42] with 1H 
decoupling [98,102,108,210,321–342]. This system has also been used 
to implement three qubit experiments by simply choosing only three of 
the spins [343], or to implement five to seven qubits by including the 1H 
nuclei, as discussed below. 

4.5. Larger spin systems 

Experiments involving more than four spins are much rarer than 
those involving the small spin systems described above, but a range of 
larger spin systems has been investigated. An early example was a sys
tem of five 19F nuclei and two 13C nuclei in a partly 13C labelled per
fluorobutadienyl iron complex [25] which was used to implement Shor’s 
algorithm to factor 15. More modern experiments however have largely 
concentrated on crotonic acid, by extending consideration to the 1H 
nuclei. These can be divided into three groups: the hydroxyl group, 
which undergoes rapid exchange and so can be ignored; the two hy
drogens attached to C2 and C3 either side of the double bond, which are 
well suited to use as qubits; and the three hydrogens in the methyl 
group, which are complicated. These three spins are magnetically 
equivalent [344], and so must be considered together as a group 
[345,346]. The three identical spin-12 nuclei can most conveniently be 
treated as an uncoupled combination of a spin-32 component and a spin- 
1
2 component, and the spin-12 component can be considered as forming a 
qubit [42,347]. The presence of the spin-32 component means that this 
equivalence is not perfect, but it is good enough for some purposes. This 
allows crotonic acid to be used as a seven qubit system [42,347–351], 
although the nature of the methyl hydrogens is sometimes considered to 
reduce this to a “six and a half” qubit system. The same molecule has also 
been used to implement five qubit experiments by using just the methyl 
hydrogens and the 13C nuclei by selecting the |00〉 component of the 
other two 1H nuclei [113,352], as discussed in Section 7.7. 

Beyond these heteronuclear systems, homonuclear systems have also 
been explored. A five qubit system can be implemented using five of the 
six 13C nuclei in fully labelled arginine, which form a linear chain that is 
not significantly coupled to the final carbon in the guanidino group 
[325]. A seven qubit system has been demonstrated using all seven 13C 
nuclei in a fully labelled cyclobutanone derivative, specifically a racemic 
mixture of (1S,4S,5S)-7,7-dichloro-6-oxo-2-thiabicyclo[3.2.0]heptane- 
4-carboxylic acid and its enantiomer [229,353,354], which has also 
been used as a six qubit system by ignoring one of the 13C nuclei [355]. 

This molecule also contains five 1H nuclei, which are all inequiva
lent, and so can be used as a twelve qubit heteronuclear system 
[356–358]. Twelve qubit experiments have also been demonstrated 
using 1H, 13C and 15N nuclei in double labelled histidine [359]. Even 
larger systems have been studied [38,126,127] by exploiting star to
pology molecules [37,360,361], but as these systems do not permit full 

independent control of the qubits I do not consider them here. 

5. Quantum control 

5.1. Unitary and non-unitary evolution 

The evolution of any purely quantum system under a Hamiltonian is 
described by the time-dependent Schrödinger equation 

i
∂|ψ〉

∂t
= H |ψ〉 (23)  

where natural units have been chosen so that ℏ = 1, and the Hamilto
nian need not be fixed but can vary with time. This has the formal so
lution 

|ψ(t)〉 = U(t)|ψ(0)〉 (24)  

depending on the propagator 

U(t) = T exp
{

− i
∫ t

0
H (t′)dt′

}

(25)  

where the Dyson time-ordering operator, T , defines a procedure for 
correctly evaluating the operator exponential, as the Hamiltonian at any 
particular time need not commute with Hamiltonians at other times 
[362]. As the Hamiltonian is Hermitian the propagator must be unitary. 
This means that pure states remain pure, or equivalently that properly 
normalised ket vectors evolve to other properly normalised kets, and 
that the inner product between different kets is preserved by the 
evolution, 

〈ϕ(t)|ψ(t)〉 = 〈ϕ(0)|U†U|ψ(0)〉 = 〈ϕ(0)|ψ(0)〉, (26)  

since U†U is equal to the identity for any unitary operator. The evolution 
of a mixed state ρ is given by 

ρ(t) = Uρ(0)U†, (27)  

and the equivalent result is that unitary evolution does not change the 
eigenvalues of the density matrix. 

Actually evaluating the propagator for a general time-varying 
Hamiltonian is only possible in very special cases, but is straightfor
ward when the Hamiltonian is piecewise constant, taking some fixed 
value H j for some time tj. In this case the sub-propagator for any indi
vidual time period is 

Vj = exp( − iH jtj), (28)  

where the matrix exponential can be calculated in many different ways 
[363]. The combined propagator is given by the time ordered product 

V = Vn…V2V1, (29)  

with time running from right to left. This structure will be key 
throughout the following sections. 

It might appear from the above that the evolution of a quantum 
system is always unitary, and this is true if the system is isolated. In 
reality, however, quantum systems are always coupled to some sort of 
surrounding environment, and this can lead to effective non-unitary 
evolution. The evolution of the combination of the system and its sur
roundings remains unitary, but the evolution of the system alone need 
not. Formally this occurs because couplings cause the state of the system 
to become entangled with the state of the surroundings, and performing 
a partial trace over the surroundings will affect the reduced density 
matrix describing the state of the system alone [10]. 

The most obvious type of non-unitary evolution is relaxation, which 
arises from uncontrolled couplings to the environment. Relaxation can 
be broadly divided into decoherence, or dephasing (transverse relaxa
tion), which acts to remove off-diagonal elements from the density 

Fig. 6. Four qubit homonuclear systems are dominated by 13C labelled cro
tonic acid. 
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matrix, and longitudinal relaxation, which changes the diagonal ele
ments, driving them towards the thermal equilibrium state. In conven
tional NMR decoherence, which occurs with a time constant T2, is a bad 
thing in that it limits resolution and sensitivity, although measurements 
of decoherence rates can be used to extract information on molecular 
motion [364], but longitudinal relaxation, which occurs with a time 
constant T1, is essential to produce the initial population differences that 
lead to detectable signals. Within QIP, however, all forms of relaxation 
are unambiguously a bad thing, as they introduce errors into the 
quantum state, which must either be resisted (using decoherence free 
subspaces [365–369]) or detected and corrected (quantum error 
correction [109,110,370,371]). State preparation in technologies other 
than NMR is usually performed using some explicit reset mechanism, 
such as optical pumping, rather than relying on natural relaxation to a 
thermal state. 

While uncontrolled evolution is a bad thing, controlled non-unitary 
evolution does have uses in QIP. The most important example is pro
jective quantum measurement, which in effect causes a superposition to 
collapse into an eigenstate. As well as being needed to extract a definite 
result from an algorithm which ends in a superposition state this pro
vides a simple route to reset qubits, such as ancilla qubits used in 
quantum error correction, permitting them to be reused. Unfortunately, 
projective measurements are not available in conventional NMR. 
Instead, the most important non-unitary operations available are mag
netic field gradients and phase cycling. 

Field gradients [372] cause the Larmor frequency, and thus the 
evolution, to vary over the macroscopic sample. As the detection process 
combines signals from all over the sample the effect is to observe an 
average density matrix. For this reason the process is normally referred 
to within QIP as spatial averaging. In effect the evolution of a particular 
molecule becomes entangled with its position, and the position is then 
“traced out” by simultaneous detection of the whole sample [373], 
which is equivalent to performing a partial trace over the position label. 
The result is similar to imposing a decoherence process on the system, 
but with two significant differences. Firstly, zero-quantum coherences 
are invulnerable to gradients in homonuclear systems: this natural 
example of a decoherence free subspace can sometimes be useful [374], 
but is more frequently a problem [375]. Secondly the dephasing can be 
reversed in spin echoes, allowing the dephasing to be applied selectively 
to some spins and not others. The effectiveness of spin echoes is reduced 
by diffusion [376], and this provides a convenient route to controllable 
decoherence [112,142]. 

Phase cycling is a major topic in conventional NMR, but in principle 
it simply refers to performing an experiment several times with different 
phases for some pulses, and then combining the results together, with 
the intention of retaining some desired signals while cancelling others 
[377–379]. Within quantum information processing this is normally 
called temporal averaging, as the evolution is averaged over experiments 
performed at different points in time. Temporal averaging can be 
generalised to include experiments that differ in other ways [380], but 
as in conventional NMR the cleanest results are obtained when the ex
periments are most similar to one another, and phase cycling remains a 
common approach. Unlike the use of field gradients phase cycling can 
discriminate between nuclear species, and can be applied to individual 
spins by using selective pulses, thus permitting the suppression of zero- 
quantum terms. The simplest approach, exhaustive temporal averaging, 
can become extremely long, but it may be sufficient just to select a subset 
of experiments [98,380]. 

I will consider non-unitary processes again in Section 8, which dis
cusses pseudo-pure states, but until then will concentrate on unitary 
transformations. 

5.2. Quantum logic gates 

One central task in implementing QIP is to implement quantum logic 
gates. Fundamentally these are just unitary transformations whose ac

tion on quantum bits has a simple interpretation in terms of information 
processing. A wide range of notations are used, but they all represent the 
same basic operations. As these operations are unitary it suffices to write 
down a unitary matrix which has the desired effect. The simplest 
example is the X gate, which converts the basis state |0〉 to |1〉; the reason 
for referring to this operation as X will soon become clear. This gate is 
described by the unitary propagator 

X =

(
0 1
1 0

)

, (30)  

which is easily shown to have the desired effect, as 

X|0〉 =
(

0 1
1 0

)(
1
0

)

=

(
0
1

)

= |1〉, (31)  

and so on. 
The X gate has a simple action on the basis states and so a simple 

interpretation in terms of classical information processing, implement
ing the NOT operation. However, as X is a unitary propagator it can also 
be applied to superposition states, since 

X(c0|0〉 + c1|1〉) = c0X|0〉 + c1X|1〉
= c0|1〉 + c1|0〉

(32)  

by linearity. If the initial and final states are viewed on the Bloch sphere, 
as described in Section 3, then the action of X is to rotate the state 
around the x-axis by 180◦, explaining the name. In the same way the Z 
gate, 

Z =

(
1 0
0 − 1

)

, (33)  

acts to rotate the state around the z-axis by 180◦. Unlike X this gate has 
no classical interpretation, but is a purely quantum logic gate. Another 
purely quantum gate is the Hadamard gate, 

H =
1̅
̅̅
2

√

(
1 1
1 − 1

)

, (34)  

which interconverts basis states and superpositions. 
The matrices describing all these gates are unitary, which is easily 

shown by direct calculation, and so these gates correspond to possible 
unitary propagators, and can in principle be implemented by evolution 
under some Hermitian Hamiltonian. In most cases the required Hamil
tonian will not be immediately available, and so it will be necessary to 
achieve the desired unitary evolution by combining a number of steps. In 
the language of NMR it is possible to construct an average Hamiltonian 
corresponding to the desired evolution, although this language is rarely 
used within QIP, where it is more normal to think about the propagators 
rather than the Hamiltonian. One exception to this general rule is the use 
of refocusing sequences, explored in Sections 10 and 11. 

5.3. The control problem 

Although a wide range of different approaches have been explored 
for controlling NMR implementations of QIP, at heart they all have the 
same structure [381]. The system has a background Hamiltonian, H 0, 
sometimes called the drift Hamiltonian, which describes the free evo
lution of the system and contains Zeeman and spin–spin coupling terms. 
The NMR spectrometer can then be used to apply additional control 
Hamiltonians, which are RF fields, usually at single frequencies near 
resonance with one or more spins. The overall evolution of the quantum 
system is controlled by varying the control Hamiltonians, by changing 
the RF amplitude, phase, and in some cases frequency. 

Unitary control is relatively straightforward in a fully heteronuclear 
system. Each spin can be viewed on resonance in its own rotating frame, 
so that the free evolution only involves the couplings, which are usually 
quite small in comparison with easily achievable RF nutation rates. In 

J.A. Jones                                                                                                                                                                                                                                        



Progress in Nuclear Magnetic Resonance Spectroscopy 140-141 (2024) 49–85

57

this case it is a reasonable approximation to simply ignore the drift 
Hamiltonian during briefly applied pulses of the control Hamiltonians. 
With separate control of amplitude and phase at the resonance fre
quency for each spin it is easy to apply any desired single-qubit gate, 
while two-qubit gates can be implemented using free evolution under 
the couplings, most simply by using spin echoes to construct controlled- 
phase gates [94]. This provides a universal set of quantum logic gates 
[92] and so any desired evolution can be approximated to arbitrary 
accuracy, and by the Solovay–Kitaev theorem this can be done effi
ciently [382]. Practical methods for the design of efficient refocusing 
networks will be discussed in Section 10. 

The situation is more complex with homonuclear spin systems. 
Fundamentally this is because the spin-selective shaped pulses [383] 
necessary to perform qubit-selective gates have a minimum length, set 
by the smallest frequency gap between the resonance frequencies of 
different spins, and so it is necessary to consider evolution under the full 
Hamiltonian, combining drift and control terms. The first homonuclear 
implementation of a quantum algorithm [21] involved two 1H spins, 
with frequency selection achieved using Gaussian shaped pulses [384], 
incorporating a phase ramp to move the resonance frequency between 
the two spins [385,386]. Choosing the pulse length to be stroboscopic 
with the frequency difference between the two spins means that the total 
evolution experienced by the other spin under its Zeeman Hamiltonian 
corresponds to an integer number of rotations and can be ignored [21]. 
An alternative approach is to use jump and return sequences 
[82,96,387], which achieve selective excitation in the shortest possible 
time [388]. 

This stroboscopic approach only works for two spins, however, and 
beyond this it is becomes challenging to use conventional shaped pulses 
as it becomes necessary to worry about the phase of every spin. The most 
direct approach, sometimes called abstract reference frames [42], simply 
creates a virtual transmitter for each spin, using conventional phase 
ramped pulses, which are kept phase coherent with the resonant spin. 
Unlike in heteronuclear systems, these pulses will weakly affect off- 
resonant spins through transient Bloch–Siegert shifts, but it is possible 
to calculate the sizes of these shifts and offset the abstract reference 
frames appropriately. These calculations are conveniently combined 
with a pulse sequence compiler [389] which keeps track of phases. A 
similar approach can be used to track extraneous spin–spin couplings, to 
avoid unnecessary refocusing operations [390]. 

A more direct approach is to replace conventional selective pulses, 
which avoid exciting unselected spins but do not leave them truly un
changed, with more sophisticated pulses which perform an identity 
operation on the unselected spins. In this case there are no phase errors 
to keep track of, but it is no longer possible to design pulses using simple 
intuitive methods. Instead it is necessary to use methods such as optimal 
control theory to find pulses with the correct behaviour [391–393]. While 
such methods are intrinsically far more complex than conventional pulse 
designs, the fact that it is only necessary to obtain the desired behaviour 
at a small number of distinct frequencies, which are known at the start of 
the process, provides a useful simplification. 

5.4. Global phases 

Global phases arise in quantum mechanics because the conventional 
description of a quantum state in terms of a ket contains more infor
mation than the state itself does. They are rarely a concern in conven
tional NMR because the use of notations based on density matrices 
causes them to disappear. This is obvious for a pure state density matrix, 
since 

ρ′ = |ψ′〉〈ψ′| = eiγ|ψ〉〈ψ |e− iγ = |ψ〉〈ψ| = ρ, (35)  

where the two global phases are just scalars, and so can be moved to the 
same side, where they obviously cancel. Mixed states are simply aver
ages over pure states, and so the same argument applies, and this gen

eralises to NMR operators such as Iz. Such operators are not really 
density matrices (in particular they have trace equal to zero, while all 
properly normalised density matrices have trace equal to one) and 
within NMR QIP they are usually called deviation density matrices [19], 
but their behaviour towards global phases is identical to that of true 
density matrices. 

Global phases are also an issue when considering propagators, and 
here can cause more serious concerns. For any propagator U there is an 
infinite family of equivalent propagators, 

U′ = eiγU, (36)  

whose action on a ket differs only by a physically irrelevant global 
phase, which cancels out for density matrices as usual. Thus U and U′ are 
entirely equivalent, but they are not actually identical. 

Different but equivalent propagators must correspond to different 
but equivalent Hamiltonians, and global phases arise from elements in 
the Hamiltonian which are proportional to the identity operator. 
Equivalently, different global phases correspond to different positions 
for the zero point of the energy scale, which have no physical signifi
cance as only energy differences are physically meaningful. Such terms 
do not arise in conventional NMR treatments, where all Hamiltonians 
are combinations of traceless operators, but they are regularly seen in 
other physical systems, where the energy zero is frequently placed at the 
energetic ground state, rather than at the zero-field spin energy as done 
in NMR. 

Problems with global phases will not normally arise if a consistent 
notation is used throughout, but problems can arise when combining, 
for example, NMR notation with theoretical QIP notation. Most of the 
fundamental logic gates used in QIP do not correspond to traceless 
Hamiltonians, and within NMR QIP can only be implemented with a 
global phase shift. For example the NOT gate is implemented as a 180◦

x 
rotation, but this has the propagator 

exp( − iπIx) =

(
0 − i
− i 0

)

(37)  

which differs from the desired X gate (Eq. 30) by a global phase of − i. 
When seeking to implement a NOT gate in NMR it is essential either to use 
a fidelity measure that ignores global phase differences, or to ensure that 
the target has the appropriate global phase. 

This second approach can largely be achieved by specifying targets in 
NMR notation, but even then a subtlety can arise: spin-12 particles exhibit 
spinor behaviour [373], and thus pick up a global phase of − 1 on being 
rotated through a full circle. Thus the operators for a 180∘

x and a 540∘
x 

rotation differ by a sign, even though they have identical physical ef
fects, and the same is true for 180∘

x and 180∘
− x rotations. This phenom

enon is important in, for example, the design of composite pulses, where 
the global phase in the target unitary may have to be allowed for [394]. 

6. Optimal control 

The basic idea of optimal control [395,396] is to use numerical 
searches to locate a set of time-varying controls which optimally im
plements some desired unitary transformation U in the presence of a 
fixed drift Hamiltonian. The overall Hamiltonian 

H (t) = H 0 +H 1(t) (38)  

is best considered in some suitable rotating frame where it can be taken 
as piecewise continuous, permitting the corresponding unitary trans
formation V to be calculated using Eqs. 28 and 29. From this a trans
formation fidelity can be calculated as 

F =

⃒
⃒
⃒
⃒
tr(U†V)
tr(U†U)

⃒
⃒
⃒
⃒

2

. (39)  
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Note that if V = U then U†V is equal to the identity, and so the trace is 
maximised; taking the square of the absolute value removes any global 
phase differences, while the denominator acts to normalise the result 
into the range 0⩽F ⩽1, as desired for a fidelity measure. The task is then 
to locate a parameterised set of values of H 1(t) which maximises F . 
The parameterisation can be as simple as the strengths of the control 
Hamiltonians at each point in the piecewise continuous form, or can be 
more complex and indirect. To better reflect experimental limitations it 
may prove necessary to restrict the strengths of control fields, or at least 
to penalise solutions which require unrealistically strong fields, and it 
can also be useful to seek solutions whose fidelities are robust with 
respect to minor errors in the drift and control Hamiltonians. 

Within this general class of problems many different approaches 
have been explored. These vary principally in the choice of optimization 
algorithm, the choice of fidelity measure, and any restrictions that are 
placed on the form of H 1(t), as briefly outlined below. 

6.1. Optimization algorithms 

Since the quality of a chosen set of controls is summarised by a real 
number, the fidelity, optimisation can be performed using any general- 
purpose algorithm to maximise the fidelity, or equivalently to minimize 
the infidelity, defined by 

I = 1 − F . (40)  

A wide range of minimization algorithms are available, but these can be 
divided into broad categories according to the use that the algorithm 
makes of gradients, and any measures that the algorithm takes to guard 
against becoming trapped in local minima. 

Perhaps the simplest approach is the simplex algorithm [397], which 
seeks a local minimum in an n-dimensional search space by exploring 
n+1 distinct points. The function is evaluated at each of the points 
forming the vertices of this simplex, and an attempt is made to improve 
the current worst point by a series of operations which move it in the 
general direction of the better points. Eventually the simplex will sur
round a local minimum, and will then contract so that all the vertices 
approximately coincide at the minimum. This approach requires only 
that the function can be evaluated at any point, and in particular the 
function does not need to be differentiable. It is also relatively robust to 
situations where the function cannot in fact be precisely evaluated, but 
only estimated to within some uncertainty. This can be relevant in the 
case of closed-loop control, discussed in Section 9, where the fidelity is 
determined experimentally rather than evaluated computationally, and 
the uncertainty is governed by noise. A simple example familiar from 
conventional NMR is provided by computer adjustment of shim coil 
currents to maximise the size of a deuterium lock signal [398]. 

More rapid convergence can normally be achieved if the algorithm 
has access to gradients of the function with respect to the control pa
rameters. (The use of n+1 distinct points means that the simplex algo
rithm has implicit access to gradient information through finite 
differences [399], but the gradients are not explicitly calculated or 
used.) The most obvious approach, steepest descent, simply moves in the 
direction of the gradient until the value of the function stops decreasing. 
This method is ancient [400,401] but converges less rapidly than a naive 
consideration might suggest. To obtain more rapid convergence it is 
necessary to use a method such as conjugate gradients [402,403] which 
avoids the zig-zag paths imposed by steepest descent. Even better 
convergence is obtained by using the Hessian, that is the matrix of 
second derivatives of the function, but finding this may be rather tedious 
if a large number of control variables are involved. An excellent 
compromise is provided by the second order quasi-Newton Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [404–407], which ap
proximates the Hessian using values of the gradients from successive 
steps, and so gives rapid convergence near the minimum without 
excessive overhead in the earlier stages [408]. The BFGS algorithm is 

available in many standard mathematical packages: for example the 
Matlab minimisation function fminunc has options to use both con
ventional BFGS and the limited memory L-BFGS variant [409,410] when 
gradients are provided. 

All of these algorithms will converge on some minimum, but a 
function may possess multiple minima, and the aim is to find the lowest 
(or equal lowest) of these, which is a global minimum. In the most 
general case it is very hard to be sure that this has been achieved, but 
there are several approaches for tackling the problem. Most simply, if 
the infidelity function is confined to lie between 0 and 1 then any 
minimum with an infidelity equal to 0 must be a global minimum, and 
pragmatically any point with a sufficient small infidelity is good enough. 
If the search algorithm converges to a point which is not good enough, 
then the search can be restarted from a different initial position, with the 
hope of converging on a better local minimum. 

A more sophisticated alternative is provided by simulated annealing 
[411], which builds on the earlier Metropolis algorithm [412]. While 
conventional minimization algorithms only ever move downhill a 
simulated annealing algorithm may also move uphill, just as thermal 
excitations can allow a physical system to cross an energy barrier to 
reach a lower energy state. As the algorithm progresses the equivalent 
temperature of the process, which determines the probability of 
accepting an uphill move, is gradually reduced, so that the algorithm 
turns smoothly into a conventional minimization process. The method is 
particularly effective at locating a deep global minimum surrounded by 
shallow local minima, but provides no protection against the presence of 
multiple deep but suboptimal minima, as the algorithm is likely to 
become trapped by the first deep minimum that it finds. A closely related 
algorithm, threshold acceptance, can perform the same search more 
rapidly [413], but does not overcome the fundamental problem of deep 
but false minima. 

Simulated annealing was swiftly applied to the problem of NMR 
pulse design [414,415], most famously in the development of the BURP 
(Band-selective, Uniform Response, Pure-phase) family of pulses [416]. 
The threshold acceptance algorithm has been used in combination with 
more conventional minimization to design control pulses for NMR QIP 
[417]. Note that simulated annealing should not be confused with 
quantum annealing [418,419], which seeks to minimise a function using 
explicitly quantum hardware [420], and has been demonstrated using 
an NMR implementation [158]. 

A quite different approach is provided by genetic algorithms [421], 
also known as evolutionary algorithms. A set of controls can be 
considered as a genotype, with the corresponding unitary trans
formation being the phenotype, and the fidelity providing a fitness 
function, which should be maximized. The algorithm begins with a 
random selection of genotypes, from which the fittest members are 
selected. New members are then generated by a combination of muta
tion and crossing existing members, and the process is repeated. The 
process of selection means that the highest fidelity sequences will be 
retained, while the mutation and crossing processes allow the control 
space to be explored. 

Although the genetic approach appears promising, in practice it is 
only useful when the parametrisation of the problem means that new 
population members retain some common features with their anteced
ents. In other cases mutation and crossing effectively produce entirely 
unrelated trial solutions, and the genetic algorithm becomes simply a 
complicated way of optimising a function by sampling values at random. 
After an early application in designing shaped pulses [422], interest 
within conventional NMR largely moved to its use in automated analysis 
[423,424], but more recently the technique has been applied to solid 
state NMR [425,426], to in vivo NMR [427], and to NMR QIP 
[231,238,428]. 

6.2. Fidelity measures 

The fidelity measure introduced above, Eq. 39, is not the only 
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possible choice. One apparently obvious alternative is to take the square 
root of this definition, using the absolute value of the trace rather than 
its square. This is a simple monotonic transformation, and so the choice 
may seem arbitrary, but taking the square has practical advantages. In 
particular, evaluating the differential of an absolute value is messy, 
while its square is much better behaved, since |y|2 = y*y leads to 

d|y|2

dx
= y*dy

dx
+ y

dy*

dx
= 2Re

(

y*dy
dx

)

, (41)  

where Re indicates taking the real part. This form also shows clearly that 
when the fidelity is close to unity then taking the square root halves the 
calculated infidelity. 

One important exception to this occurs when the global phase dif
ference between U and V is known beforehand, a situation which can 
occur in the design of simple composite pulses [394]. In this case the 
global phase can be corrected before calculating the fidelity, and there is 
no need to take an absolute value. This leads to the simplest possible 
fidelity and gradient functions, which is particularly useful when ana
lytic methods are used. For numerical optimisation, however, the 
robustness of taking the square modulus makes it the simplest and most 
straightforward approach. 

A far more significant change is to replace this propagator fidelity 
with a state fidelity, such as 

F ψ = |〈ψ|U†V|ψ〉|2 = 〈ψ |U†V|ψ〉〈ψ|V†U|ψ〉 (42)  

which measures how accurately V changes |ψ〉 into the desired state 
U|ψ〉. Such state-to-state fidelities (also called point-to-point fidelities) 
are frequently used in conventional NMR, but are only rarely used in 
QIP, as the initial state before applying a logic gate is not normally 
known. The two forms can be related by averaging the state-to-state 
fidelity over a sufficiently wide range of input states, and this 
approach is particularly useful for single-qubit gates [429], where it 
suffices to average over three states corresponding to the cardinal axes of 
the Bloch sphere. 

An apparent computational advantage of this approach is that the 
state V|ψ〉 can be obtained by numerical integration of Eq. 23 without 
the need to explicitly determine the propagator V [393], which is a key 
feature of approaches such as Spinach [430,431]. However, finding se
quences that perform the correct unitary transformation requires aver
aging over a large number of input states, and the expense of doing so 
wipes this gain out. For conventional NMR there is much to be said for 
following the straight and narrow path: “do not open krons, do not 
diagonalise, use cheap norm estimators, and do not exponentiate 
matrices” [432], but for QIP it is vital to remember the caveat “unless 
you absolutely have to” [432]. 

A second advantage of state-to-state fidelities is that they can be 
generalised to non-unitary evolution. Eq. 42 can be rewritten as 

F ρ = 〈ψ|U†ρU|ψ〉 (43)  

where 

ρ = V|ψ〉〈ψ|V† (44)  

is the density matrix corresponding to the pure state V|ψ〉, but the same 
fidelity equation can be used when ρ is a mixed state density matrix, 
arising from |ψ〉 by some more general process. This form enables the 
design of optimal state transfers [433] and quantum gates [434] in the 
presence of significant relaxation processes. 

It is tempting to generalise this formula even further, and to define a 
fidelity between two density matrices ρ and σ as something like tr(ρσ), 
but as discussed in Section 3 this form is only correct if at least one of the 
density matrices corresponds to a pure state. Instead it is necessary to 
use the Uhlmann–Jozsa fidelity, as discussed in Section 3.2. In addition 
to being somewhat complex to calculate, even using the efficient form 

[119], the interpretation of any mixed state fidelity can be unintuitive. 
For now I will simply ignore the question, although I will return to it in 
Section 8. 

Despite the warning above, the naive fidelity expression tr(ρσ) is very 
frequently used in conventional NMR, and is commonly extended to 
calculations involving deviation density matrices such as product op
erators. Such expressions are not normally genuine fidelities, and in 
particular are not normally restricted to values between 0 and 1, but 
they can provide a useful and easily calculated function to maximise or 
minimise. Fortunately, these naive expressions can be used when 
comparing one density matrix with different unitary transformations of 
another density matrix [435], and this is frequently sufficient. It is 
necessary to be careful when extending this definition to operators 
describing coherence orders rather than magnetizations [344], as these 
are not Hermitian and so not equal to their adjoints, and it is necessary to 
distinguish carefully between tr(ρσ) and tr(ρ†σ). 

The optimization function can also be used to design pulses subject to 
specific constraints by adding a penalty function which discourages, for 
example, large control amplitudes or rapid changes in amplitude [436]. 
Such mixed optimization functions are not strictly speaking fidelities, 
but their behaviour can be very similar, particularly if penalties are only 
applied above some threshold. However it is generally better to avoid 
the use of penalty functions if their aim can be achieved in some other 
way [437], such as the restricted forms discussed below. When such 
mixed optimization functions are used it is important to be aware that 
the “fidelity” might not be confined to the conventional range of 0 to 1, 
and so the infidelity calculation in Eq. 40 is not always appropriate. 

6.3. Robustness to errors 

Until now I have assumed that the control Hamiltonian experienced 
by a particular spin system is equal to the control Hamiltonian that was 
nominally applied, but in practice this will not be the case [321,438]. 
Although the strengths of control fields can be calibrated by simple 
measurements, the assumption that a control field has a fixed strength is 
incorrect. The NMR sample is macroscopic and the applied RF field will 
vary significantly over the sample. The exact pattern of B1 in
homogeneity will depend on the sample and the RF coil, but in a typical 
NMR system the main distribution is approximately Gaussian, with a 
width of around ±5%, and a significant tail at much lower values [439]. 
This can be reduced by using a small sample [440], or by using NMR 
methods to select regions of high homogeneity [42,350,441], but cannot 
be entirely eliminated, and is a particularly serious problem with early 
designs of cryogenic probes [442]. Errors can also arise if the B1 field 
strength is miscalibrated, or if it changes after calibration, for example 
due to temperature changes in the RF amplifier. 

Tackling B1 strength errors is a major topic in conventional NMR, 
notably through the use of composite pulses [443,444], and is also an 
important topic in NMR QIP. Such systematic errors can be addressed 
because they are reproducible, and so can be arranged to largely cancel 
out. Fortunately it is easy to build a requirement for robustness into 
optimal control by simply averaging the fidelity over a range of different 
control field strengths [433], although more sophisticated processes 
have also been considered [445,446]. It is not normally necessary to 
choose this range particularly carefully or to sample the range finely, 
and choosing field strengths such as 97%, 100% and 103% of the 
nominal value seems to work well in practice. The variation of fidelity 
with field strength is usually slow enough that a pulse that performs well 
at these three values will perform adequately across the whole of the 
main part of the distribution. Dealing with spins in the tail of the dis
tribution, with very low B1 strengths, is far more challenging, and rarely 
worth the effort. 

With a heteronuclear spin system it is important to remember that 
the RF field inhomogeneity pattern may be different for different nuclei. 
A typical NMR probe has two physical coils, an inner coil with a high 
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filling factor [447] and a larger outer coil. Each coil may be tuned to 
multiple resonance frequencies [448], most commonly placing high 
frequencies on one coil and low frequencies on the other; ideally the 
nucleus actually detected should be placed on the more sensitive inner 
coil, with the outer coil only used to apply control fields, but it is 
common, if not ideal, for QIP experiments to be performed on systems 
optimised for other conventional purposes, and so for probes to be used 
the wrong way round. The RF field inhomogeneity depends strongly on 
the coil geometry, and only weakly on the RF frequency, and so will be 
very similar for all nuclei addressed through the same coil. It is therefore 
sufficient to consider at most two sets of field distributions, and so 
average over nine combinations of different field strengths. 

A further problem can arise when the RF field strength varies during a 
control pulse, for example if the power of an RF amplifier rises or falls 
after it has been activated [440], or as a consequence of the finite 
response times of tuned circuits [449]. While some cases can be 
modelled fairly accurately, the most general errors have to be addressed 
in another way, such as monitoring the RF amplitude during a pulse 
using a pickup coil [293], or by using closed-loop control. 

In early work it was common to design control sequences to be robust 
to other types of systematic error, such as variations in the chemical 
shift. In practice this is usually unnecessary for QIP, and RF in
homogeneity is normally the only important effect to consider. This is 
very different from the situation in conventional NMR, where the use of 
optimal control theory to design band-selective pulses is a very impor
tant topic, and this is addressed briefly in Section 7.6. An interesting 
modern exception to this general rule is the design of sequences which 
are robust to the spin states of passive spins, a point explored in more 
detail in Section 7.7. 

6.4. General and restricted forms 

Optimal control requires finding a set of control fields that achieve a 
desired aim, and it is important to consider how these control fields are 
parameterised. I am assuming that the fields will be piecewise contin
uous, to enable a practical solution of Eq. 23, and the simplest approach 
is just to digitise the control fields at equally spaced intervals in time, as 
is normally done when specifying a shaped pulse. For a homonuclear 
spin system all qubits are affected by the same control field, and so the 
Hamiltonian is conveniently parameterised as 

H j = H 0 + αx
j Fx +αy

j Fy (45)  

where H 0 includes resonance offset terms and couplings, αx
j and αy

j are 
real amplitudes, and 

Fx =
∑

k
Ik

x, Fy =
∑

k
Ik

y (46)  

are the total angular momentum operators across all spins. Alternatively 
the real amplitudes can be packed together to form a single complex 
amplitude, α = αx + iαy, and this can be described using its magnitude 
and phase rather than its components. In a heteronuclear spin system 
there are separate control fields, and thus separate amplitudes, for each 
homonuclear subset of spins. 

To access the full flexibility offered by arbitrary control fields it 
might seem best to sample the control fields as finely in time as possible, 
but this is not the case. The physical apparatus used to generate the 
control fields will always have some limiting time resolution, but even 
above this limit it may prove difficult to actually implement very rapid 
variations. The analogue parts of any NMR system will always act as 
low-pass or band-pass filters, smoothing the applied waveform, but 
more seriously the digital control circuitry can introduce significant 
switching transients at every change in complex amplitude. This is 
rarely a major problem with modern spectrometers built around direct 
digital synthesis [450,451], but imperfections can be very serious for 
older systems which use switchable attenuators, where much better 

experimental results are seen with a coarser time spacing [437]. Beyond 
these experimental issues, designing a more finely sampled pulse will 
clearly require more computer power [452]. A more careful analysis is 
attempted below, but it is clearly desirable not to sample much more 
finely than necessary. Fortunately, simple Fourier considerations indi
cate that a very fine sampling is not normally required. 

A common approach is to vary both the x and y components of the 
control fields, or equivalently to vary both their amplitude and phase, 
but it can be useful to consider more restricted forms. In particular it can 
be very convenient to use a fixed amplitude for the control fields and 
vary only the phase. This avoids any need to impose an amplitude 
penalty, but also has computational advantages, as discussed in Section 
7.4 below. A less common approach is to fix the phase and vary only the 
amplitude, or to use a single control field along x, fixing αy = 0, which 
corresponds to restricting the phase to 0 and π. This has the disadvan
tage that any such pulse cannot distinguish between spins at positive and 
negative values of the same absolute offset frequency. 

Several more restrictive approaches have been explored in detail, 
some of which have counterparts in conventional NMR, and all of which 
are designed to describe a long shaped pulse with a relatively small 
number of parameters. One approach is to split a sequence into fixed 
amplitude pulses and variable length delays, which within QIP is known 
as quantum bang–bang control [453]. This approach has been widely 
explored for dynamical decoupling (Section 11), but also for more 
general control [238,454]. At the other extreme some authors have 
aimed to design smooth pulses by describing the amplitudes in terms of 
low frequency Fourier components, as seen in conventional NMR in the 
BURP family of pulses [416], and which was more recently applied in 
NMR QIP [358]. In this case the low frequency description is often 
converted to a high frequency sampled waveform before calculating the 
evolution, which can cause complications in calculating gradients. 

6.5. Composite pulses 

Another approach of considerable historical importance is strongly 
modulating composite pulses [197,321]. Like conventional composite 
pulses, these construct a shaped pulse from a small number of pulses 
placed back-to-back, but in addition to the phases the amplitudes, 
lengths, and offset frequencies are also varied. By using a sequence of 
frame transformations it is possible to directly calculate the overall 
evolution in an efficient manner, and for systems with small numbers of 
qubits excellent single-qubit gates can be designed with ease. The final 
optimised sequence is then converted to a conventional finely sampled 
shaped pulse, using phase ramping to implement any frequency shifts 
[385,386]. 

Strongly modulating pulses have been widely applied in NMR QIP 
experiments [197,203,205,217,218,321,359,438,455–457] including 
solid state [63,64] and strongly coupled systems [75], quadrupolar 
nuclei [458,459] and ENDOR [460]. For some time it seemed likely that 
the approach would become the dominant method for designing pulses 
for NMR QIP, but it has now been effectively superseded by the more 
general GRAPE technique described in Section 7. 

Conventional composite pulses, in which the individual pulses have a 
fixed common frequency, usually have a fixed common amplitude, and 
frequently have either a fixed common length or individual fixed lengths 
which are small multiples of some underlying basic length, are rarely 
useful for qubit selective addressing. Superficially they appear suitable 
for use in heteronuclear QIP systems, but even in this case there can be 
issues arising from evolution under spin–spin couplings when pulses are 
applied simultaneously to two or more spins, and it may be better to use 
simple pulses [140]. They have, however, found wide application in 
dynamical decoupling, as described in Section 11, and have also been 
used in two-qubit homonuclear spin systems, where their tolerance of 
off-resonance errors permits uniform excitation of both spins [461]. This 
uniform excitation can be combined with jump and return sequences to 
provide frequency selection [388]. These applications have led to 
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considerable interest in designing composite pulses for NMR QIP, some 
of which may have wider applications in conventional NMR. These 
novel pulses are all universal rotors, which perform well for any initial 
state, sometimes called Class A composite pulses [444]. 

The design of robust NOT gates turns out to be much simpler than the 
more general case, particularly when these gates are made from se
quences of 180◦ pulses [394]. Early results from conventional NMR 
include the three-pulse sequence 180120 180240 180120, which corrects 
B1 strength errors, and the related sequence 18060 180120 18060, which 
tackles off-resonance errors [462,463]. (When designed for use in con
ventional NMR it is common not to try to design a NOT gate but simply to 
implement a 180◦ rotation around some axis in the xy-plane, but this can 
be easily fixed by offsetting all the phases, and sequences listed here 
correspond to the desired 180x rotations, up to a global phase of ±1.) A 
key result is a simple five-pulse sequence 

180240 180210 180300 180210 180240 (47)  

which tackles both B1 strength and off-resonance errors. Within NMR 
QIP this is generally called the Knill pulse and is widely used in 
dynamical decoupling [464,465], as discussed in Section 11.1. The 
performance can be further improved with sequences of seven or nine 
pulses [394]. 

For dealing with B1 strength errors in quantum gates corresponding 
to other rotation angles, the BB1 sequences designed by Wimperis [466] 
have proved particularly useful. These provide good suppression of B1 
strength errors at no cost to the sensitivity to off-resonance effects, and 
are available for all pulse flip angles. One minor change when applying 
them to NMR QIP is that the correction sequence, comprising four 180◦

pulses, is usually placed in the middle of the main error-prone pulse, 
rather than before it as in Wimperis’s original design. For the design of 
NOT gates (180∘

x pulses), the Wimperis sequence can be applied itera
tively [467], permitting sequences with arbitrary suppression of B1 
strength errors to be designed with relative ease. For other rotation 
angles this iterative approach is not successful, but a mixture of analytic 
and numerical searches have found some BB1 style sequences which 
outperform the classic design [439,468]. Shorter composite pulses are 
also available from the SCROFULOUS family [469], but these are less 
effective at suppressing errors, and with the exception of NOT gates 
require some unusual rotation angles for individual sub-pulses. 

Tackling off-resonance errors is also difficult for pulse flip angles 
other than 180◦. The CORPSE and short-CORPSE sequences [469] give 
moderate error suppression, but again require unusual rotation angles. 
More recently these pulses have been placed in a wider context [470], 
but the original solutions remain among the most promising. Of more 
interest are the ConCatenated Composite Pulses (CCCPs) [471–473], 
which provide simultaneous compensation of off-resonance and pulse- 
strength errors for arbitrary flip angles, and which have been demon
strated in NMR experiments [474]. 

Finally there has been significant theoretical interest in exploring the 
limits of error suppression with composite pulses, beyond the specific 
iterative approach to suppression of B1 errors in NOT gates [467]. Note 
that the interest within QIP is usually in obtaining very precise quantum 
gates in the presence of moderate underlying errors, the opposite of the 
situation in conventional NMR which usually seeks moderate perfor
mance over very wide ranges of parameter values. A key result is that 
there is no limit in principle to the accuracy that can be achieved as 
existing pulse designs can always be improved using methods similar to 
those used to derive the Solovay–Kitaev theorem [475,476]. The orig
inal paper is a challenging read, but a more detailed explanation in more 
conventional NMR notation is available [477], which also clarifies the 
need for sufficiently accurate inverse pulses when using the Solo
vay–Kitaev construction. This is not a problem for B1 errors, as a θ− x 
pulse remains an accurate inverse for a θx pulse, but care is needed when 
seeking to correct off-resonance errors, as in this case the errors will add 
up in the sequence θxθ− x instead of cancelling out [477]. There are also 

specific results available for the case of pulse strength errors [478], 
where it is possible to draw analogies between composite pulses and 
filter designs [479]. 

6.6. Choosing an approach 

Shaped pulses developed for applications in conventional NMR have 
frequently used restricted forms. This choice seems to have been driven 
firstly by a desire for pulses which either vary smoothly or which change 
sharply at only a small number of points, thus imposing fewer demands 
on the implementation hardware, and secondly by a belief that the 
number of controllable parameters should be kept small to reduce the 
computation time required. Both of these concerns are now unwar
ranted, due to the design of modern spectrometers with direct digital 
synthesis, which can produce even complicated waveforms with 
comparative ease, and the rapid progress in computer power, tradi
tionally summarised in Moore’s laws [480]. With computing power 
increasing by an order of magnitude every five years [481], problems 
that were very challenging thirty years ago are now straightforward. 

These concerns also led to a concentration on algorithms that avoid 
gradients. Superficially it appears that fidelity gradients can only be 
calculated using finite difference methods, and this requires n+1 func
tion evaluations for a function with n input parameters. If these inputs 
are simply digitised amplitudes, then there will be n sub-propagators to 
calculate for each function evaluation, leading to an apparent O(n2) time 
complexity for gradient-based methods, compared to O(n) for methods 
that only use function values directly. Gradient-free methods also permit 
solutions to the possibility of local minima, as described in Section 6.1 
above. This approach has been explored within QIP as the chopped 
random basis (CRAB) [482] and related algorithms [483]. However, a 
key result about optimal control landscapes is that the great majority of 
control problems are in fact free of such traps [484–487], suggesting 
that such concerns are in fact unlikely to be important. 

Avoiding gradients is also usually unnecessary as there are methods 
to find gradients more efficiently by storing partial results, an example 
of a time–memory tradeoff [488]. Within NMR this is usually imple
mented through the gradient ascent pulse engineering (GRAPE) algo
rithm [433], which has applications in both NMR QIP and more 
conventional NMR studies, and which is explored in detail in Section 7. 
Other implementations of QIP have largely concentrated on the earlier 
Krotov family of algorithms [489–492]. The principal difference be
tween these approaches is that the GRAPE family uses gradient calcu
lations to update all the points in a pulse shape simultaneously, while 
the Krotov family sweeps forwards and backwards across the shape. 
Although these two families superficially appear quite different, it is 
possible to describe them, and possible hybrids, within a unified 
framework [493,494]. Gradient techniques can also be applied within 
the CRAB family, giving rise to the gradient optimization of analytic 
controls (GOAT) scheme [495]. 

7. GRAPE 

Gradient ascent pulse engineering (GRAPE) [433] can refer to a wide 
range of related algorithms for optimal control, usually but not always 
within the context of NMR. Implementations can differ in the choice of 
underlying fidelity function, the presence of penalty functions, and the 
choice of optimization algorithm, but are all united by a common 
approach to the calculation and use of fidelity gradients. 

Here I concentrate on applications within NMR QIP, and so I largely 
consider the standard unitary fidelity, Eq. 39. The Hamiltonian is nor
mally assumed to be piecewise continuous (although more general 
forms have also been considered [449]), where the jth Hamiltonian is 
applied for a fixed time τ, and takes the form of a sum over the drift 
Hamiltonian and all possible control Hamiltonians scaled by their 
amplitudes, 
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H j = H 0 +
∑

k
αk

j Fk, (48)  

as shown in Fig. 7. Here the sum over k can run over x and y (to allow 
phase control as well as amplitude control) and also over multiple nu
clear species in a heteronuclear system. As usual the overall propagator 
is given by the time ordered product 

V = Vn…Vj…V1 (49)  

with sub-propagators 

Vj = exp( − iH jτ). (50)  

This restriction to fixed equal time intervals is not essential to what 
follows, but is a common and convenient approach, reflecting the way 
shaped pulses are encoded within NMR hardware. 

The original authors considered a wide range of fidelity functions 
[433], corresponding to different tasks and to the presence of different 
assumptions about relaxation, but for optimising unitary trans
formations they seek to maximise 

Φ4 = |〈U|V〉|2 = 〈U|V〉〈V|U〉 (51)  

where the inner product between two operators is defined as 

〈U|V〉 = tr(U†V). (52)  

This trace form for an inner product may appear unfamiliar, but is in fact 
precisely how the inner product between two kets is defined if the kets 
are written explicitly as matrices: the product of a complex conjugated 
row matrix (representing a bra) by a column matrix (representing a ket) 
gives a one-by-one matrix, and taking the trace of this matrix converts 
the single element to a scalar as desired. Note that Φ4 differs from the 
conventional unitary fidelity, Eq. 39, by a normalisation factor. For a 
system of q qubits U†U is the identity matrix of size 2q, and so 

F = Φ4/4q, (53)  

but if one is seeking to maximise the fidelity the precise normalisation is 
irrelevant as long as one is consistent. 

The next stage is to rewrite the inner product in an equivalent form 

〈U|V〉 = tr
(
U†Vn…Vj+1Vj…V1

)

= tr
([

V†

j+1…V†
nU
]†[

Vj…V1

])

= tr
(

P†
j Xj

)

= 〈Pj|Xj〉

(54)  

where the second line uses the standard identity ABC = (C†B†A†)
† and 

the fact that the adjoint is self inverse. Here 

Xj = Vj…V1 (55)  

is the forward propagated operator up to the jth time period, and 

Pj = V†

j+1…V†
nU (56)  

is the backward propagated target. In this notation 

Φ4 = 〈Pj|Xj〉〈Xj|Pj〉 (57)  

for any value of j, with the conventional form, Eq. 51, corresponding to 
the choice j = n. 

This form is far more convenient for calculating derivatives, 

∂Φ4

∂αk
j
= 2Re

(

〈Pj|
∂Xj

∂αk
j
〉〈Xj|Pj〉

)

, (58)  

which follows from the product rule, the linearity of the trace function, 
the fact that Pj is independent of αk

j , and Eq. 41. The forward propagator 
Xj does depend on the jth set of control amplitudes, but only through the 
final sub-propagator, 

∂Xj

∂αk
j
=

∂Vj

∂αk
j
Vj− 1…V1. (59)  

Up to this point everything is exact. 
Calculating the derivative of the sub-propagator is more challenging, 

but if the control amplitudes are sampled finely then τ will be small 
enough that a linear approximation can be used, 

∂Vj

∂αk
j
≈ − iτFkVj, (60)  

as discussed below. Putting this all together leads to the key result 

∂Φ4

∂αk
j
≈ − 2Re

( 〈
Pj|iτFkXj〉〈Xj|Pj〉

)
, (61)  

which is accurate to first order in τ [433]. The significance of this form is 
that the forward and backward propagators can be calculated efficiently 
if partial results are stored. Since Xj = VjXj− 1, and so on, it is only 
necessary to calculate each sub-propagator once, and then to multiply 
everything out twice: forwards to obtain the X matrices and backwards 
to obtain the P matrices. This permits gradients to be estimated is a time 
O(n), that is linear in the number of control points rather than the 
quadratic dependence observed for naive finite difference methods. 

Similar formulae can be derived for a range of alternative fidelity 
measures, and including the effects of non-unitary evolution. While 
these methods have important applications in conventional NMR 
[496–498], they are rarely relevant to NMR QIP and will be largely 
ignored here. Writing an implementation of GRAPE is fairly straight
forward using a high-level computing language which provides opti
mization routines. Alternatively, implementations are available as 
packages written in Matlab (Dynamo [493], Spinach [430,499]), Python 
(QuTiP [500,501]), Julia [502], and C (SIMPSON [503]). 

Fig. 7. The GRAPE trick allows the inner product 〈U|V〉 to be rewritten in terms 
of forward and backward propagators as 〈Pj|Xj〉, which enables gradients to be 
calculated efficiently by storing intermediate values. 
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7.1. Approximate derivatives 

In the section above I simply asserted that Eq. 60 provides an 
approximate formula for the derivative of a sub-propagator with respect 
to one of the control amplitudes. Before turning to the correct formula 
for the exact derivative it is useful to consider a simple justification for 
this form, which also shows why it is only approximate and indicates the 
conditions under which the approximation is a good one. Start by 
writing 

∂Vj

∂αk
j
= lim

δ→0

exp(− i[H j + δFk]τ) − exp(− iH jτ)
δ

(62)  

and note that the fundamental problem in evaluating this is that Fk will 
not normally commute with H j, which makes evaluation of the first 
matrix exponential complicated. However, as δ is small and small evo
lutions almost commute with everything, this can be approximated as 

exp(− i[H j + δFk]τ) ≈ exp(− iH jτ)exp(− iδFkτ)
≈ exp(− iδFkτ)exp(− iH jτ).

(63)  

Choosing the second form, and using the fact that as δ is small a series 
expansion can be used for the first exponential term, giving 

∂Vj

∂αk
j

≈ lim
δ→0

(
1 − iδFkτ + O(δ2) − 1

δ

)

exp
(

− iH jτ
)

≈ − iτFkVj

(64)  

as stated previously. The flaw in this argument can be seen by instead 
choosing the first approximate form in Eq. 63, which leads to 

∂Vj

∂αk
j
≈ − iτVjFk, (65)  

and since Vj and Fk will not normally commute these two forms will be 
different, and neither of them will be correct. The solution to this is 
simply to note that if τ is small enough then Vj will be a small evolution 
that almost commutes with everything, and so the two forms are almost 
the same and are both approximately correct, with Eq. 60 chosen for 
convenience in subsequent calculations. As stated in [433] this result is 
only valid to first order in τ. For this reason, the standard approximate 
gradient, Eq. 61, becomes more accurate as the shape of the pulse is 
sampled more finely. Fortunately the linear time scaling achieved by 
GRAPE means that fine enough division is normally practical. 

7.2. Exact derivatives 

While it is possible to use these approximate derivatives, it would be 
desirable to find a more precise formula [504], as this will give much 
better convergence with more sophisticated optimization algorithms 
such as BFGS [408,493,505]. The route to an exact formula has been 
known for some time [506,507], and has been applied within conven
tional NMR [508]. The exact derivative of the exponential of a sum of 
two non-commuting operators A and xB with respect to x at x = 0 can be 
evaluated in the eigenbasis of A as 

〈

ξl

⃒
⃒
⃒
⃒

∂
∂x

eA+xB
⃒
⃒
⃒
⃒ξm

〉

=

⎧
⎪⎨

⎪⎩

〈ξl|B|ξm〉eξl , if ξl = ξm,

〈ξl|B|ξm〉
eξl − eξm

ξl − ξm
, otherwise,

(66)  

where A|ξl〉 = ξl|ξl〉. This result is derived in Appendix A of [493]. This 
approach requires H j to be diagonalized at each point, but the resulting 
eigenvectors and eigenvalues can be reused to calculate matrix expo
nentials, replacing the more normal combination of the scaling and 
squaring and Padé approximant methods [363]. 

7.3. Approximate evaluation of propagators 

The section above describes how to perform optimizations more 
accurately, but there remains some value in methods for performing 
approximate calculations as rapidly as possible. This is principally useful 
to obtain good initial guesses for a control pulse which can then be 
optimized by more precise methods. One approach which initially 
appeared promising was the method of Gradient Ascent Without Matrix 
Exponentiation (GRAWME) [509], which replaces all the matrix expo
nentials in a calculation by approximate forms. This method has been 
superseded by the realisation that phase-only control, discussed in the 
next section, gives even greater speed gains while retaining full accu
racy, but the idea remains of historical interest, and similar ideas have 
been applied in other contexts [358]. 

GRAWME begins by writing the control fields in terms of a time- 
varying amplitude and phase, rather than the x and y amplitudes, to get 

H j = H 0 +Aj
(
cosϕj Fx + sinϕj Fy

)
. (67)  

This allows Vj to be rewritten as 

Vj = e− iϕjFz Vx
j eiϕjFz (68)  

where 

Vx
j = exp( − i[H 0 +AjFx]τ) (69)  

is the equivalent operator with all the amplitude along x. This operator is 
the sum of two non-commuting observables, and so requires explicit 
matrix exponentiation [363]. It can, however, be approximated using 
the Trotter–Suzuki form [510–512] 

Vx
j ≈ e− iH 0τ/2 e− iAjFxτ e− iH 0τ/2 (70)  

which is accurate to third order in τ. Here the first and third terms are 
fixed; the central term depends on Aj but can be easily evaluated as the 
eigenbasis is fixed, and so can be made diagonal with a known fixed 
basis transformation which interconverts Fx and Fz. Putting everything 
together gives 

Vx
j ≈ e− iϕjFz W1 e− iAjFz W2 eiϕjFz (71)  

with all explicit matrix exponentials now diagonal in the computational 
basis. The two basis transformations are defined by 

W1 = e− iH 0τ/2 H(q), W2 = H(q) e− iH 0τ/2, (72)  

where H(q) is the q-qubit Hadamard gate, which converts between the x 
and z basis. As these are independent of Aj and ϕj they need only be 
calculated once. For the situations typical in the design of NMR GRAPE 
pulses the fractional error in the evaluation of fidelities is around 10− 6, 
which is negligible in many cases [509]. 

Avoiding explicit matrix exponentials (or more precisely only eval
uating matrix exponentials in a diagonal basis, where the calculation is 
easy) will clearly speed up the evaluation of propagators, but unfortu
nately the overall gain is only by a constant factor. The most time- 
consuming step is now matrix multiplication, and like matrix expo
nentiation this is an O(N3) process, where N = 2q is the dimension of the 
vector space. Further constant gains can be obtained by careful coding of 
multiplications involving diagonal matrices [509], but it is not possible 
to entirely avoid full matrix multiplications, and the overall speed gains 
observed were around a factor of 10. Extensions to higher order ap
proximations have also been explored [513]. 

7.4. Phase-only control 

Phase-only control [514] has several significant advantages over 
general control for the design of GRAPE pulses. The derivations above 
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assume that the amplitudes of the x and y components of the control 
fields are varied independently, or equivalently that the amplitude and 
phase of the RF field are both control variables. In phase-only control the 
amplitude is held at some fixed value A and only ϕj is allowed to vary. 
This means that Vx

j in Eq. 68 is constant, and only has to be calculated 
once, so there is no reason to use approximations. 

As before the phase shift operators are diagonal, and so easy to 
calculate. The exact derivative is also easy to calculate directly as 

∂Vj

∂ϕj
= − iFzVj + iVjFz = i

[
Vj,Fz

]
. (73)  

If desired this approach can be extended to calculate the exact Hessian 
directly [341], rather than approximating it by BFGS methods. For 
maximum efficiency it is important to use the diagonal structure of the 
phase shift operators to perform the relevant multiplications rapidly, 
rather than naively using a full matrix form [509]. 

Phase-only control has the further significant advantage of removing 
any need to apply penalty functions to discourage excessive RF ampli
tudes, as the amplitude is simply fixed at some desired value. This will 
also remove any transient errors arising from amplitude changes, except 
at the start and end of the pulse. If a smoothly varying amplitude is 
desired instead, then it is easy to modify the calculation to use a pre- 
determined value for Aj at each point. Experience suggests that phase- 
only control is in practice almost as flexible as full control as long as 
the time step τ is chosen small enough, and the efficiency of the calcu
lations more than makes up for any increase in the number of control 
parameters. Note that phase only control takes shaped pulse design back 
to its origin in composite pulses, and phase-only shaped pulses can be 
interpreted as very long composite pulses [515]. An important example 
from conventional NMR is the use of binomial solvent-suppression se
quences [516], although these only use phases of 0 and 180◦. 

7.5. Subsystem control 

The methods above can provide significant speed-ups, making 
GRAPE pulses an entirely practical method for implementing quantum 
logic gates in systems with three or four spins, but the fundamental 
scaling of the computational time required with the size of the spin 
system remains a problem. As noted above, the time required for 
elementary matrix multiplications scales as O(N3), where N = 2q is the 
dimension of the Hilbert space for a system of q qubits. As a consequence 
the time required to design a GRAPE pulse increases by a factor of at 
least 8 for every additional spin in the system, and in practice the growth 
is often worse as more selective control usually requires a longer control 
sequence. 

A partial solutions to this is provided by subsystem control [389]. 
Suppose that one wishes to design a single-qubit gate in the four-qubit 
system provided by the 13C nuclei in labelled crotonic acid (Fig. 6). 
These four spins form a rough linear chain, with large couplings (over 
40Hz) between nearest neighbours and smaller long range couplings 
(under 10Hz). This system can be fairly well modelled as a pair of three- 
spin systems, one made up from the first three spins and the other from 
the last three, with the omitted spin and all couplings to it simply 
dropped from the two subsystem Hamiltonians. A control sequence 
which performs a gate on the four-spin system should also perform an 
equivalent action on the two three-spin subsystems fairly well, and vice 
versa. The fidelity of the operation in a four-qubit system can be 
approximated as the average fidelity over the two three-qubit sub
systems, and it is considerably faster to perform calculations with two 
three-qubit systems than with a single four-qubit system. The equiva
lence of the fidelities will not be perfect, but it is easy to check the fi
delity of the subsystem solution for the full Hamiltonian, and if 
necessary to complete the optimization over the full Hamiltonian 
starting from the subsystem solution as a good initial guess. 

The subsystem approach can be taken further, describing crotonic 

acid as a combination of three different two-qubit subsystems, retaining 
only the nearest neighbour pairs with large couplings. For a controlled 
gate it is clearly essential to include at least those couplings directly 
involved in the control process, but if the aim is to design a single-qubit 
gate then the most extreme simplification, modelling the system as four 
independent single-qubit subsystems, can be a useful start. 

While subsystem control has proved useful even in small systems, its 
real power comes into play in much larger spin systems. For example, 
the 12 qubit system implemented with seven 13C and five 1H spins [356] 
is too large to simulate directly, and was instead simulated using either 
two non-overlapping subsystems of six spins each [357], which does not 
allow full control, or five overlapping subsystems with between two and 
four spins in each [358], which enables every pair of spins to be accessed 
either directly or indirectly. 

Similar approaches have been used to simulate the quantum circuits 
used in NISQ (noisy intermediate-scale quantum) devices [517,518]. 
The presence of decoherence in such systems means that only an 
approximate simulation is required, permitting the effective simulation 
of circuits previously claimed to lie beyond the limits of simulation 
[519]. Such approaches cannot, however, be used to simulate error-free 
quantum systems, raising concerns as to whether subsystem control can 
be used effectively in true quantum computers. 

7.6. Single-spin control 

A special case occurs when optimal control is performed on an 
ensemble of single-qubit systems, either as an extreme example of sub
system control or for applications in conventional NMR such as the 
design of broadband pulses or pulses that selectively excite particular 
frequency bands [442,520–529]. Such pulses can, of course, be designed 
using any of the methods described above, but for single spin control 
significant speed-ups are possible by taking advantage of the small size 
of the vector space. In particular the sub-propagator Vj and its de
rivatives can be easily evaluated analytically, rather than using the 
numerical methods which are required for larger spin systems. 

For single-spin control state-to-state fidelity measures are particu
larly interesting, as the relevant state space is small. In conventional 
NMR it is common to seek pulses that perform correctly for a spin 
initially along the z axis of the Bloch sphere, such as inversion or exci
tation pulses. This can be achieved within QIP by using the fidelity for 
the initial state |0〉, and the approach can obviously be generalised to 
optimise the performance for any particular starting state. 

Another common problem in conventional NMR is refocusing pulses, 
which perform well for spins in the xy plane. These could be found by 
optimising over two orthogonal states in the xy plane, such as | + 〉 =

(|0〉 + |1〉)/
̅̅̅
2

√
, which lies along the x-axis, and |R〉 = (|0〉 + i|1〉)/

̅̅̅
2

√
, 

which lies along y. However, any single spin operation which performs 
correctly along two orthogonal axes will also perform correctly along 
the third, and there is no substantive difference between optimising the 
state-to-state fidelity averaged over any two orthogonal states and 
optimizing the unitary fidelity. 

This is most easily seen by considering the form of U†V, which de
scribes any erroneous transformation that V performs in addition to the 
desired transformation U. For a single spin this corresponds to some 
rotation around some axis on the Bloch sphere, and any such rotation 
can only leave two particular states unaffected, these being the states 
lying along the rotation axis for U†V. The sole exception to this general 
rule is the identity operation, which leaves the entire Bloch sphere un
affected. Thus if V performs U precisely for any two states which are not 
on opposite sides of the Bloch sphere then U†V must be the identity 
operation, and so V must be equal to U. 

Thus the only high-fidelity single spin controls worth considering are 
unitary controls and controls for a single initial state: refocusing pulses 
are simply equivalent to unitary rotations. Obviously any unitary control 
can be used as a good state-to-state transfer, but a good state-to-state 
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pulse can be significantly shorter or more robust. More interestingly, the 
process can be partially reversed: there is a simple procedure to convert 
some state-to-state pulses into unitary pulses with twice the rotation 
angle and taking twice as long [530]. 

For single-spin control it can also be useful to code parts of the al
gorithm directly by hand [531] rather than using standard libraries, 
particularly when using interpreted high-level languages such as Mat
lab. Such languages have highly optimized routines for operations such 
as matrix exponentiation, which are particularly effective with large 
matrices, but when using two-by-two matrices to describe single spins 
the overhead imposed by calling routines and using standard data 
structures can far outweigh the relatively small amount of time spent 
actually calculating results. With a two-by-two matrix it is perfectly 
possible to simply store the four elements as individual values, and to 
multiply matrices by hand, explicitly coding the result for each element. 
While such code can be difficult to maintain, the resulting speed gains 
can be very significant. The gains are smaller for compiled languages, 
but still worthwhile. 

For unitary propagators corresponding to traceless Hamiltonians an 
even more compact approach is possible: all such propagators have the 
form 

U =

(
α β

− β* α*

)

, |α|2 + |β|2 = 1, (74)  

and so it is only necessary to evaluate two elements and the whole 
matrix is known. Similarly, the trace of such a matrix is twice the real 
part of either diagonal element, and so matrix traces can be evaluated 
efficiently [531]. These observations are closely related to the use of 
quaternions to describe single spin rotations [469,532]. 

7.7. Decoupling passive spins 

As discussed in Section 4, it is quite common to implement a QIP 
protocol using a spin system containing more spin-12 nuclei than the 
number of qubits required. In particular the four 13C nuclei in labelled 
crotonic acid provide an extremely popular four qubit system, but these 
four spins are embedded in a larger system containing two distin
guishable 1H nuclei, providing possible qubits, and three 1H nuclei in a 
methyl group which could be used as a further qubit. The system has 
been used to implement seven qubit experiments [42], but the most 
common approach is to reduce the spin system to four qubits by 
decoupling the 1H nuclei [102], using conventional broadband decou
pling sequences [322] such as WALTZ-16 [533]. 

While this idea seems obvious, it works less well than one might 
hope, and many experiments which use labelled crotonic acid as a four 
qubit system suffer from very significant signal losses, which are rarely 
explicitly acknowledged and even more rarely explained. The explana
tion is that while broadband 1H decoupling is very effective at removing 
the heteronuclear couplings during free evolution, it is far less effective 
in the presence of simultaneous 13C irradiation, as happens during 
GRAPE pulses, due to uncontrolled Hartmann–Hahn transfers [534]. It is 
straightforward to perform a brute force simulation of the evolution 
under the full nine spin Hamiltonian in the presence of a decoupling 
sequence with realistic RF power, and when this is done the apparently 
mysterious signal losses are replicated [98]. 

One possible solution to this is to remove the heteronuclear cou
plings by spin echoes rather than continuous decoupling [321], but this 
only works where controlled gates are constructed from sequences of 
short pulses and longer delays, rather than being implemented directly 
as long GRAPE sequences. It would be desirable to find some way in 
which the couplings to these passive spins, which play no role in the 
controlled spin system of active spins, but are simply coupled to it, could 
be ignored without the need to explicitly decouple them. 

This could be achieved by preparing the passive spins in a pure state, 
or equivalently as part of a pseudo-pure state, in effect selecting a subset 

of the components in the multiplet. If all the 1H spins are in state |0〉 then 
the effect of the heteronuclear couplings is to cause a shift, rather than a 
splitting, and they can simply be absorbed into the chemical shift, while 
the homonuclear 13C couplings remain as normal. This method has been 
used to implement a five qubit system in crotonic acid [352] by using the 
four 13C nuclei and the spin-12 component of the methyl group, while 
setting the remaining 1H nuclei to state |0〉. With this approach it is 
essential that the passive spins remain in |0〉, much as in TROSY ex
periments [535], and so it is vital to avoid accidental excitation by RF 
fields. 

An even simpler approach to this problem is to leave the passive 
spins in a highly mixed state, and then design pulses which are insen
sitive to the heteronuclear couplings. As the passive 1H spins remain in a 
fixed state during a 13C pulse sequence, their effect is simply to apply a 
frequency offset which depends on their state and so is different for 
different molecules in the ensemble. The system of nine spins can be 
treated as 32 different subsystems, corresponding to the 32 possible 
states of the 1H nuclei, with a subtly different four spin Hamiltonian for 
each subsystem. The fidelity of a pulse sequence can then be averaged 
over these subsystems, and the resulting GRAPE pulse will correctly 
address the active spins whatever states the passive spins happen to be in 
[98]. As the three methyl protons are indistinguishable this can be 
achieved more efficiently by using a weighted average over the 16 
distinguishable 1H spin states. Broadband decoupling should be applied 
to 1H during acquisition, to simplify the observed spectra, but must not 
be applied during the logic gates, to ensure that the passive spins remain 
passive. 

8. Pseudo-pure states 

Quantum information protocols use unitary transformations to ach
ieve tasks which are impossible for purely classical devices, but to obtain 
the correct results it is essential that the system starts in a well-defined 
initial state, usually taken as the state |00…0〉, with all qubits in state |0〉. 
As this initial state must be prepared, whatever the state of the system 
before the initialisation step, the initialisation process is obviously non- 
unitary, and in particular must be a process, such as cooling, which is 
capable of taking the system from a mixed state to a pure state. 

Unfortunately the non-unitary processes available within conven
tional NMR are not capable of achieving this. Evolution under the drift 
Hamiltonian or control Hamiltonians is unitary, while decoherence (T2 
relaxation) takes the system to a more mixed state. The same is true of 
processes such as gradient dephasing and phase cycling, which can be 
thought of as controllable decoherence. The sole exception is T1 relax
ation to the thermal state, but while this can increase the purity of the 
spin state it remains very highly mixed. 

The standard solution within NMR QIP is to prepare a pseudo-pure 
state, also called an effective pure state, as shown in Fig. 8 for a two qubit 
system. The underlying idea is to equalise the populations of all the 
excited states, leaving the ground state, which has the highest popula
tion at thermal equilibrium, untouched. The resulting mixed state can be 
reinterpreted as a mixture of the desired pure state and the maximally 
mixed state. Since the maximally mixed state does not evolve under 
unitary transformations, and gives no detectable NMR signal, this 
pseudo-pure state behaves just like a genuine pure state except that the 
signal is scaled down, reflecting the effective purity. 

It is important to remember that a mixed state has no unique 
decomposition, and the belief that a pseudo-pure state really is a mixture 
of the pure state and the maximally mixed state is an example of the 
preferred ensemble fallacy or partition ensemble fallacy [536]. For this 
reason it is generally not possible to use NMR methods to perform tests 
of quantum mechanics, as the results can usually be reinterpreted using 
a different decomposition [537]. However it remains true that apart 
from a scaling factor NMR experiments on pseudo-pure states give 
precisely the same results as experiments on pure states, as 
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demonstrated by pure state NMR implementations of Deutsch’s algo
rithm [135] and Grover’s algorithm [136], which are indistinguishable 
from their pseudo-pure counterparts. Furthermore, attempts to describe 
NMR QIP experiments in purely classical terms [538] appear to be 
impossible. 

8.1. Single spins 

The case of a single isolated spin-12 nucleus is special, as no prepa
ration sequence is necessary. The thermal state can be written in NMR 
notation as 

ρ =
1
2

E + pIz, (75)  

with the polarization p ≈ ℏω/2kBT ∼ 10− 5. Here Iz is a deviation density 
matrix, with trace equal to zero, rather than a proper density matrix, 
with trace equal to one. This can be rewritten as 

ρ = (1 − p)1/2+ p|0〉〈0| (76)  

where 1/2 = 1
2 E is the maximally mixed state for a single spin and |0〉〈0|

is a proper density matrix corresponding to the pure state |0〉, and so this 
is already a pseudo-pure state, as discussed in Section 3. 

This is why the Bloch sphere picture can be directly transferred to 
describe single spin NMR, ultimately leading to the success of the vector 
model [539,540]. The conventional NMR approach is built around 
traceless observables, as done in Eq. 75, dropping the undetectable 1

2 E 
term. The polarization term p could be retained, but as this simply scales 
the size of the NMR signal, and the absolute signal size has no funda
mental meaning, it is convenient to rescale everything such that p = 1. 
This is not true for larger spin systems, where pseudo-pure states are 
quite different from thermal states, and intuitions from conventional 
NMR are far less applicable to QIP systems. 

8.2. Two spins 

For two spins the thermal state can be written in NMR notation as 
Iz + Sz, but this is no longer a pseudo-pure state. The desired state is now 

ρ = (1 − p)1/4+ p|00〉〈00|, (77)  

with 

|00〉〈00| =
1
2

(
1
2

E + Iz + Sz + 2IzSz

)

, (78)  

and other initial pseudo-pure states can be written in a similar way as 

|01〉〈01| =
1
2

(
1
2

E + Iz − Sz − 2IzSz

)

,

|10〉〈10| =
1
2

(
1
2

E − Iz + Sz − 2IzSz

)

,

|11〉〈11| =
1
2

(
1
2

E − Iz − Sz + 2IzSz

)

.

(79)  

To generate a pseudo-pure state it is necessary to make an appropriate 
mixture of the three population states, including the two-spin order 
population term. Note that it is obviously possible to include the 1

2 E 
component in with the maximally mixed part, and so it is not necessary 
to specifically generate this. 

Reversing this argument, single spin polarization terms such as Iz do 
not correspond to pure states, but must represent mixed states. This is 
entirely unsurprising, as terms like Iz indicate that spin S is in a 
completely mixed state. It is, however, easy to prepare states corre
sponding to a single pure qubit, with the remaining qubits in maximally 
mixed states, which are used in the DQC1 model of computation [541]. 

8.3. Preparation methods 

Just like for pure states, the preparation process for pseudo-pure 
states must be non-unitary, except for single spin systems where no 
preparation is required. The easiest way to see this is to note that the 
eigenvalues of the density matrices are different for pseudo-pure and 
thermal states, and so these cannot be related by a unitary trans
formation, which always leaves the eigenvalues unchanged. As both 
states are diagonal in the computational basis, these eigenvalues can 
simply be read off directly as the state populations. In a pseudo-pure 
state for a two-spin system, three states will have the same popula
tion, while the state corresponding to the desired pure state will have a 
higher population. By contrast the populations in the thermal state will 
be more diverse, with three distinct values in a homonuclear two-spin 
system and four distinct values in the heteronuclear case. 

Methods for preparing pseudo-pure states can be divided into three 
broad categories. The conceptually simplest approach is logical labelling, 
which simply uses a subset of levels within a larger spin system which 
happen to have the right pattern of populations [19,20]. For example, a 
two qubit computer can be encoded using three physical spin-12 nuclei by 
assigning physical state |ααα〉 = |000〉 to logical |00〉 and physical states 
|ββα〉, |βαβ〉 and |αββ〉 to logical |01〉, |10〉 and |11〉 in some order. It is 
obviously necessary to use a larger number of physical spins than logical 
qubits, but the overhead is not too large [19]. 

The simplicity of the preparation sequence comes at a cost in the 
complexity of implementing quantum gates, as even single-qubit gates 
which act correctly on the logical qubits will be very complex when 
encoded to apply to the physical spins. A better approach is to manip
ulate the initial populations, so that the desired population pattern is 
shifted to the four states |000〉, |001〉, |010〉 and |011〉, giving a much 
simpler relationship between logical and physical states [19,20]. The 
spin system is now in a pseudo-pure state, conditional on the first spin 
being in state |0〉, and logic gates can be implemented directly as long as 
they do not interchange the |0〉 and |1〉 states of this labelling spin [20]. 
This approach has been experimentally demonstrated to encode two 
logical qubits in a three-spin system [100,131]. Because it relies on 
naturally occurring patterns of identical populations, the approach is 
only applicable to homonuclear spin systems. 

A more popular approach is temporal averaging by permutation [380], 
which requires no additional qubits. In essence temporal averaging is 
similar to phase cycling, in that results from a number of similar 

Fig. 8. Preparing a pseudo-pure |00〉 state in a homonuclear two qubit system. A thermal state (a) has higher populations in the lower levels, shown exaggerated 
here. A mixing process is applied to equalise populations in the upper levels, leaving the lowest level untouched (b). The result can be treated as a mixture of the 
desired pure state (c) and the maximally mixed state (d) with equal populations in every level. 
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experiments are averaged together, but here the experiments differ in 
the distribution of initial state populations. Since quantum logic gates 
and NMR readout are both linear processes, this is equivalent to per
forming a single experiment on an averaged input state. For example, on 
a two qubit system the experiment is run first on the thermal state and is 
then run preceded by each of the two cyclic permutations of the pop
ulations of the three excited state populations, leaving the ground state 
untouched in each case. This method works equally well with homo
nuclear and heteronuclear spin systems, as it makes no assumption 
about the pattern of populations beyond the lowest level having the 
highest initial population. 

The most popular methods for preparing pseudo-pure states, how
ever, are based on spatial averaging [16,17], which is built around the use 
of magnetic field crusher gradients to dephase quantum states. The 
process in a two-spin homonuclear system can be easily understood 
using product operators [44]. It normally begins by adjusting the rela
tive populations of the two spins by partly exciting one of them and then 
applying a crusher gradient to remove off-diagonal terms. 

Iz + Sz →
60◦Sx Iz +

1
2
Sz −

̅̅̅
3

√

2
Sy

→crush Iz +
1
2
Sz

(80)  

This is followed by a series of pulses, coupling periods, and a final crush 
gradient to convert Iz to the right mixture of inphase and antiphase 
terms. 

Iz →
45◦Ix 1̅

̅̅
2

√ Iz −
1̅
̅̅
2

√ Iy

→
couple 1̅

̅̅
2

√ Iz +
1̅
̅̅
2

√ 2IxSz

→
45◦I− y 1

2
Iz −

1
2
Ix +

1
2

2IxSz +
1
2

2IzSz

→crush 1
2
Iz +

1
2

2IzSz

(81)  

where couple indicates a delay of duration 1/2J for evolution under the 
pure spin–spin coupling Hamiltonian πJ2IzSz. Note that the 12Sz term is 
unaffected by the pulses and coupling terms, and comes through this 
stage unscathed. The process thus generates the correct final combina
tion of terms for a pseudo-pure state. The coupling period can be 
implemented using spin echoes to refocus the Zeeman interactions, or 
alternatively such evolution can simply be tracked and the phases of 
subsequent pulses adjusted. As the gradient pulses crush all off-diagonal 
terms, any rotations of the reference frame at the end of the process can 
simply be ignored, which significantly simplifies the implementation. 

Whenever using sequential gradient crush sequences, it is necessary 
to guard against accidental gradient echoes, where two crush sequences 
cancel each other, causing crushed terms to be revived. In homonuclear 
systems it is also important to avoid generating zero-quantum co
herences, as these are not crushed by gradients. In heteronuclear sys
tems zero-quantum coherence is not a problem and the simpler sequence 
[373] 

Iz + Sz →
45◦(Ix + Sx) →

couple
→

30◦(I− y + S− y)

→crush
̅̅̅
3
8

√

(Iz + Sz + 2IzSz)

(82)  

can be used. This sequence requires initially equal polarizations on the I 
and S spins, which can be achieved with a pulse applied to the higher 
polarization spin followed by a crush gradient, or with a more complex 
sequence [373] to average the two polarizations. 

8.4. Practical methods 

The methods of temporal averaging and spatial averaging can be 
extended from two spins to larger spin systems. Within temporal aver
aging, the naive exhaustive averaging approach requires performing 
2q − 1 separate experiments on a system of q qubits, and so is only 
practical for small systems. More efficient methods have been explored, 
combining non-cyclic permutations and unequal weights in the aver
aging process, permitting a pseudo-pure state to be prepared in a system 
of four homonuclear spins using a weighted sum of only five permuta
tions rather than a naive average over 15 cyclic permutations [542]. 
Alternatively, random permutations can be used to prepare approximate 
pseudo-pure states in very large systems [380]. 

In spatial averaging, the basic aim is to use unitary transformations 
to convert a thermal state to a state with an appropriate pattern of 
populations, and then apply crusher gradients to remove off-diagonal 
terms. This approach works well in fully heteronuclear systems, but 
difficulties arise in homonuclear systems, where zero-quantum coher
ence terms are unaffected by the crusher gradients. One solution to this 
is to use methods adapted from temporal averaging to perform qubit- 
selective crusher pulses, but as the number of experiments required 
doubles with every selective crush pulse applied [543] this swiftly be
comes impractical unless exhaustive averaging is replaced by a ran
domized process [98]. 

Because of this it is not possible in homonuclear systems to simply 
apply a single unitary transformation (to assemble the correct popula
tion pattern) followed by a single crush pulse (to remove off-diagonal 
terms). Instead, it is necessary to alternate unitary and non-unitary 
transformations in a more complex pattern. The original method 
[16,17] used the hand-designed sequence described above to generate 
the correct product operators with two crusher pulses [44]. A more 
systematic approach uses controlled-transfer gates [543] to assemble the 
desired population pattern without ever generating zero-quantum co
herences. This approach also has the advantage of extracting the largest 
possible amount of pseudo-pure state from a given initial state, and the 
method works equally well with heteronuclear spin systems or non- 
thermal initial states. However, the complexity of the sequences 
required means that they are rarely applied to systems with more than 
two spins. 

Considerable simplifications to the networks required can be ach
ieved if the single spin populations are first adjusted into a useful 
pattern, sacrificing optimal theoretical efficiency for practical 
simplicity. This can be achieved by applying selective excitations to a 
single spin and then applying a crush pulse to remove off-diagonal 
terms, as shown for a two-spin system in Section 8.3. A particularly 
common approach with crotonic acid, a homonuclear four-spin system 
well approximated by a linear chain, is to adjust the populations along 
the chain to be in the ratios 8 : 4 : 2 : 1, halving with every step down 
the chain, after which a simple sequence of just five controlled gates and 
three crush pulses can be used to generate a pseudo-pure state [330]. A 
network for achieving this is shown in Fig. 9; this network is very slightly 
simpler than the original, and uses the correct sign for the evolution 
under couplings. The size of the pseudo-pure state extracted can be 
enhanced by beginning the experiment with a non-thermal state in 
which populations are enhanced by nuclear Overhauser effects [98]. 

Many other methods for generating pseudo-pure states have been 
explored, in particular combining temporal averaging and spatial 
averaging methods to get the advantages of both [213,380,544,545], 
and using highly entangled states [42] or singlet states [546]. It is in 
general much simpler to produce states which are almost pseudo-pure 
than fully pseudo-pure states, and several techniques for doing this 
have been described [69,297,547]. 

8.5. Fidelities 

Given the emphasis on optimal control through computer search in 
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earlier sections, it might seem odd that the preparation of pseudo-pure 
states remains dominated by hand-designed approaches. One reason 
for this is that the conventional fidelity formulae are not easily appli
cable in this case, as they tend to assume that either one of the states 
involved is pure, or that the quantum evolution is unitary, or both. Since 
a pseudo-pure state is a highly mixed state, and must be prepared by a 
non-unitary process, great care must be taken. 

Suppose it is desired to prepare a pseudo-pure state corresponding to 
the pure state |00〉 in a two-spin system. It might seem that 

〈00|ρ|00〉 (83)  

would provide a suitable fidelity expression for a general state ρ. 
However, this expression simply identifies the size of the component of ρ 
which is parallel to |00〉, and is entirely insensitive to any other property. 
Thus, for example, the two states 
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and 
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(85)  

would give precisely the same result, even though ρ1 clearly is a pseudo- 
pure state, and ρ2 clearly is not. 

Similar issues arise if the naive mixed state fidelity, tr(ρσ), is used to 
compare a general state ρ with a target pseudo-pure state 

σ = (1 − p)1/4+ p|00〉〈00|. (86)  

As the trace operation is linear this is a weighted sum of contributions 
from the pure component, which leads to the problems discussed above, 
and from the maximally mixed component, which reduces to tr(ρ)/4, 
which is simply equal to 1/4 for any properly normalised density matrix. 

For these reasons conventional fidelity functions are rarely useful 
when designing networks to prepare pseudo-pure states. It is possible to 
fall back to the Uhlmann–Jozsa fidelity, or to other measures of in
fidelity, such as ||ρ − σ|| for some suitable matrix norm, but while these 
are suitable for testing whether two states are identical they might not 
be particularly useful for comparing the quality of two imperfect 
matches to the desired state. For example, a pseudo-pure state with sub- 
optimal effective purity is likely to be more useful for practical purposes 
than a state of the wrong form, even if this is formally closer to the 
desired state. 

9. Closed-loop control 

All the methods described so far have been examples of open-loop 
control, in which the control sequence is designed on a computer using a 
description of the physical system, and then simply implemented on it. 
The underlying physical system is not used in the design of the control 
sequence, except possibly in some final calibration experiments. A 
radically different approach is provided by closed-loop control, in which 
the physical system itself is used as the principal design tool. Rather than 
calculating fidelities, which is computationally expensive, the actual 
state-to-state fidelity is measured experimentally, and the control pa
rameters are adjusted to optimize it. 

Since being proposed as a route for controlling quantum systems 
with laser pulses [548], the method has been widely explored 
[549–553]. The approach has two major advantages over open-loop 
control, both of which arise from the use of the quantum system to 
study the effects of the control sequence. Firstly, simulating the control 
sequence using an explicitly quantum mechanical physical system 
avoids the exponential complexity blow-up inherent in classical simu
lations [3], by in effect using the quantum system to simulate its own 
behaviour [4]. Secondly, using the system itself allows the true param
eters actually describing the system to be used, rather than approximate 
measured values, and uses the control fields actually applied, rather 
than those requested. If the initial state can be easily prepared and the 
final state easily characterised, then measuring state-to-state fidelities is 
straightforward, and with the technologies normally used it is possible 
to apply thousands or even millions of trial control sequences to the 
system every second. More recently it has been suggested that closed- 
loop feedback can be combined with open-loop GRAPE control to get 
the best of both approaches [554]. 

Closed-loop quantum control has been less frequently applied in 
NMR, although it has been used in the design of an NMR gyroscope using 
optical readout [555] and within NMR QIP for the preparation of Bell 
states [174] and for quantum metrology [270]. The achievable repeti
tion rate is usually quite slow with NMR, as the long relaxation times 
limit the rate at which initial states can be prepared. The ensemble na
ture of the NMR readout process is an advantage, but this is also the case 
in some other implementations. 

The most important weakness of closed-loop optimization is that it is 
really only suitable for state-to-state fidelities, and cannot easily be 
generalized to design true unitary transformations. To do the latter re
quires finding the state-to-state fidelity for an exponentially large 
number of initial states that span the basis of dimension 2q for a system 
with q qubits. This is not quite as bad as performing full quantum process 
tomography [556,557], but it remains a very challenging process for 
systems with more than a few qubits. 

9.1. Randomized benchmarking 

Although quantum process tomography takes too long to be useful in 
closed-loop control, it has been demonstrated for assessing the perfor
mance of control sequences in simple cases [128,203]. As for quantum 
state tomography, methods have been developed to make the process 
more efficient [163,166,225,254,558], but it remains a challenging task, 
and it is desirable to find some simpler quality measure. 

Fig. 9. A pulse sequence to generate a pseudo-pure state in a linear chain of 
four homonuclear spins such as crotonic acid. The spins are labelled 1 to 4 
along the chain. The initial pulses applied to spins 2, 3 and 4, with θ2 =

arccos(1/2) = 60◦, θ3 = arccos(1/4) ≈ 76◦, θ4 = arccos(1/8) ≈ 83◦ respectively, 
followed by a crusher gradient (G), act to adjust the populations. Subsequent 
pulses are all 90◦ (broad boxes) or 45◦ (narrow boxes), with phases of x for 
pulses before a coupling period, shown in red, and − y for pulses after a 
coupling period, shown in blue. Coupling evolution for a time 1/2J under a 
single coupling, isolated using a spin echo, is shown as two circles connected by 
a line. The absolute phases of all pulses are unimportant, but the relative phases 
of red and blue pulses must be set correctly. 
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One popular approach is randomized benchmarking [559,560], 
which aims to estimate the relevant fidelity of a set of quantum logic 
gates for implementing complex quantum networks by applying long 
sequences in random orders. Note that the method cannot be applied to 
characterize a single gate, and more general questions have been raised 
about the meaning and value of such measurements [561], especially in 
the presence of correlated (non-Markovian) errors [562,563]. 

The method has been demonstrated on NMR implementations of 
three qubit [293] and four qubit [329] systems, and has also been used 
to monitor calibration errors in electron spin resonance [564]. It is 
possible to combine randomized benchmarking with partial quantum 
process tomography when more detailed information is desired [144]. 
Other methods for estimating average fidelities have also been explored 
[353]. 

10. Refocusing networks 

The use of optimal control methods opens up very considerable 
freedom in the design of experiments to implement quantum algorithms. 
Conventionally an algorithm will be written as a network of logic gates, 
which can then be compiled into a longer network of simpler one- and 
two-qubit logic gates, forming a universal set [92]. All that is then 
necessary is to implement a small number of logic gates, spanning the 
universal set. 

This might not, however, be the best way to proceed, and it is 
common for experimentalists to design optimal control sequences which 
directly implement more complex gates, such as the Toffoli gate [285], 
or more exotic gates such as the partial SWAP [341]. Similarly, one can 
design a control sequence which implements a small network of more 
basic gates in one go, or even implement an entire algorithm in one 
control sequence [262]. This final approach can, however, become 
illegitimate, with all the work of the algorithm actually being done by 
the compiler [565]. 

At the other extreme it can be useful to restrict oneself to using only 
single-qubit gates and free evolution under the drift Hamiltonian [358], 
essentially equivalent to using pulses and delays in conventional NMR. 
This greatly simplifies the GRAPE problem, as it is only necessary to 
design gates which act selectively on individual spins, or on groups of 
spins, leading to much shorter pulses than those designed to implement 
controlled logic. Two-qubit gates are implemented through periods of 
free evolution under a Hamiltonian containing only single spin z terms 
and two-spin zz interactions. During this time no RF is applied, reducing 
the scope for error. As well as being demonstrated in NMR systems 
containing 4, 7, and 12 qubits, simulations have been performed in 
fictional square two-dimensional lattices containing 16, 36, and 100 
qubits, suggesting that the method can be scaled to very large systems 
[358]. 

Within this approach it becomes very important to find methods for 
designing efficient spin echo sequences that sculpt the drift Hamiltonian 
into a more desirable form. The conventional NMR approach of nested 
spin echoes is adequate for small systems, but becomes unwieldy above 
a handful of spins [28]. Fortunately far more efficient methods exist. 
These methods are all designed to select or to rescale couplings within 
an extended network as efficiently as possible, while simply refocusing 
all single spin offset frequencies (chemical shifts). When single qubit z 
rotations are required, for example to turn coupling gates into 
controlled-phase gates [94], this can be easily achieved: applying two 
180◦ rotations around axes in the xy-plane that are separated by a phase 
angle δ is equivalent to performing a z-rotation through an angle 2δ, 

180∘
ϕ2

180∘
ϕ1

= 2(ϕ2 − ϕ1)z, (87)  

which can be interpreted as an Aharonov–Anandan phase [566]. This 
approach is far more convenient than the conventional composite z 
rotation [567], as it can be combined with the refocusing network by 
simply changing the relative phase of two refocusing pulses. 

The most basic task in Hamiltonian sculpting is to refocus all the 
chemical shifts and all but one of the couplings, so that the effective 
evolution is under the single retained coupling. In a two-spin IS system 
this can be achieved by applying 180◦ pulses to both spin I and spin S at 
time t/2, half way through the evolution period t. For completeness, a 
second pair of 180◦ pulses should be applied at the end of the evolution 
period, although in conventional NMR this is frequently omitted. 

The way to understand this spin echo [568] is that 180◦ pulses 
reverse the sign of the chemical shift evolution, so that evolution in 
opposite directions for two equal times causes it to cancel overall, but as 
the pulses are applied to both spins the zz coupling is reversed twice, and 
so left unchanged. In a three spin ISR system it becomes necessary to add 
180◦ pulses at times t/4 and 3t/4, dividing the individual evolution 
times in two again. In a four spin ISRT system these times would be 
subdivided yet again, with four 180◦ pulses applied to spin T at times 
corresponding to odd multiples of t/8. Clearly the process can be 
extended to any number of spins, but this approach will result in an 
exponential growth in both the number of time periods and the number 
of 180◦ pulses as the number of spins is increased. 

10.1. Walsh–Hadamard patterns 

Fortunately this naive approach is not the best way to tackle large 
numbers of spins. Instead, more efficient refocusing schemes can be 
devised [569–571], based on the properties of Hadamard matrices, and 
requiring a number of time periods that scales only linearly with the 
number of spins, and a number of pulses that scales only quadratically. 
These methods are best described using Walsh–Hadamard matrices, 
where each row is a Walsh function [572]. These are only defined for 
dimensions equal to a power of two, while more general Hadamard 
matrices can be defined for most multiples of 4 [569]. They differ from 
the standard Hadamard matrices used in QIP [10] in the rows not being 
normalised, and the ordering of the rows being different. 

A Walsh function WN
n is defined by a vector with length N equal to a 

power of 2 and with all the entries set to ±1. For every strictly positive 
integer n < N the vector WN

n has half the entries set to +1 and half set to 
− 1, with the entries arranged to create n regularly spaced sign changes 
along the row, while for the special case of WN

0 all the entries are + 1, so 
there are no sign changes, as expected for n = 0. For the case N = 4 the 
Walsh–Hadamard matrix contains the four rows listed in Fig. 10. 

From now on the superscript value of N, which specifies the number 
of columns, will be dropped, leaving only the subscript n indicating the 
number of sign changes. The value of N is specified implicitly, being 
equal to the smallest power of 2 larger than the highest Walsh number 
considered. The Walsh functions can be considered as digital equivalents 
of sine and cosine functions, and are sometimes called sal (for functions 
with odd parity around the middle) and cal (for functions with even 
parity) [572], but treating them as a single basis set is more useful here. 

Fig. 10. The four Walsh functions W4
j and the patterns of 180◦ pulses which 

generate them. Note that pulses are applied whenever the function changes 
sign. The pulses shown in grey are not necessary to generate the desired 
modulation, but are required to return the effective Hamiltonian to its 
initial sign. 

J.A. Jones                                                                                                                                                                                                                                        



Progress in Nuclear Magnetic Resonance Spectroscopy 140-141 (2024) 49–85

70

A single spin z interaction can be refocused by ensuring that its 
pattern of evolutions corresponds to a Walsh function other than W0, 
which can itself be achieved by applying a 180◦ pulses at points corre
sponding to sign changes, as shown in Fig. 10. The zz coupling between 
two spins will evolve with a pattern described by the product of the two 
corresponding Walsh functions, which is itself a Walsh function given by 

Wm∘Wn = Wm⊕n (88)  

where the ∘ symbol indicates element-wise multiplication, sometimes 
called the Schur product [573], and the ⊕ symbol indicates bitwise 
addition modulo 2. For example, W2∘W3 = W1, which is easily verified 
directly. 

Since m ⊕ n equals 0 if and only if m = n, this means that all cou
plings will also be refocused unless two spins experience the same pul
ses, in which case the coupling will be retained at full strength. Thus the 
optimal way to sculpt the drift Hamiltonian to isolate a single coupling is 
to assign the two coupled spins to the pattern W1 and all other spins to 
successively higher numbered Wn. 

10.2. Time optimal refocusing 

The procedure above can be used to assemble a set of one-qubit z and 
two-qubit zz interactions by isolating each coupling in turn and imple
menting single qubit rotations using Eq. 87 to choose appropriate rela
tive phases for two 180◦ pulses. However, although each individual step 
is optimal this will not normally achieve the desired evolution in the 
shortest possible time, as it is sometimes possible to retain several 
different coupling interactions in parallel. 

The simplest case where this cannot be achieved is provided by a 
system of three coupled spins. Here it is simple to design refocusing 
sequences which retain any one of the three couplings between the 
spins, while refocusing the other two, but it is impossible to retain two 
couplings while refocusing the third. Thus to achieve coupling evolution 
under two couplings it is necessary to perform separate evolutions under 
each coupling, applying two refocusing sequences back-to-back. In 
larger spin systems, however, it is possible to select certain subsets of 
couplings: for example, in a system of four coupled spins it is easy to 
simultaneously retain couplings between spins 1 and 2, and between 
spins 3 and 4, while refocusing everything else. 

Finding the time-optimal refocusing pattern is not a trivial problem, 
but it can be accomplished using methods from linear programming 
[95]. The method starts by assigning spins to Walsh patterns with 
numbers given by successive powers of 2. This guarantees that every 
one- and two-spin interaction will be assigned to a unique Walsh patten, 
and so they can all be controlled independently. Linear programming 
then seeks a set of evolution times which achieves the desired overall 
evolution in the shortest possible time, subject to the constraint that all 
individual times must be non-negative. In practice it is more stable to use 
time symmetrised solutions, which automatically remove all single qubit 
terms, and then reintroduce these through phase shifts [95]. 

Linear programming is a practical solution for systems up to around 
20 spins, after which the time required to find solutions, which grows 
exponentially with the number of spins, becomes impractical. This is 
unlikely to prove an important restriction as NMR QIP systems larger 
than this appear impractical for other reasons [28]. However if neces
sary it is possible to use approximate methods to locate near-optimal 
solutions in a much shorter time, with only polynomial time scaling, 
and this has been demonstrated for simulated systems of up to 125 spins 
[95]. 

10.3. Engineered networks 

If very large devices are ever implemented using NMR QIP or related 
techniques then it is likely that these will be engineered systems, rather 
than natural molecules. A simple model is to assume that the spins form 

a two-dimensional square array, with couplings only between near 
neighbours [358]. For the case of a square array with only nearest- 
neighbour couplings there exists a simple constructive algorithm for 
designing near-optimal refocusing networks in a time which is linear in 
the number of spins, and so scalable up to arbitrary sizes [574]. The 
resulting patterns are never worse than a factor of two slower than the 
true time-optimal solutions, and are robust to the presence of next- 
nearest-neighbour couplings. Related ideas have been explored in 
superconducting qubits [575]. 

11. Dynamical decoupling 

Dynamical decoupling [576–578] refers to a family of methods for 
removing unwanted interactions between a quantum system and its 
environment, ultimately built upon the Hahn spin echo [568] and 
methods for coherent averaging [579]. Although the term sounds very 
similar to decoupling in NMR, it differs from it in one central way: the 
control pulses are applied to the system, rather than to the environment. 
The ultimate aim is to retain the state of a qubit unchanged as far as 
possible, producing a reliable memory [464]. 

Both decoupling and dynamical decoupling seek to remove un
wanted interactions by applying control sequences which cause spin 
echoes. If the interactions were static and local then a single spin echo 
would suffice, but noise can cause these interactions to fluctuate, while 
additional strong interactions within the environment can cause infor
mation to spread out beyond the original spin pair. For this reason it is 
necessary to apply spin echoes repeatedly, ideally rapidly compared 
with the fluctuation rate and compared with the sizes of the interactions 
within the environment. In conventional NMR the environment is 
frequently dominated by spins of a different nuclear species to the sys
tem, and it is practical to apply the control sequences to the environment 
spins, decoupling them from the system [580–583]. In general, however, 
the environment can be far more varied, and may be uncontrollable, in 
which case control pulses have to be applied to the system itself. This is 
familiar within conventional NMR as the CPMG spin echo train 
[584,585]. 

This conceptual difference leads to significant practical differences. 
Because pulses are applied to the system itself there is a danger of 
dephasing due to inhomogeneity in the RF field. For this reason it is 
important that the 180◦ pulses are designed to be as accurate as possible 
in the presence of systematic errors, and that they are designed to 
perform well as general rotors, and not just as inversion pulses as is the 
case for conventional decoupling. Similarly, any phase sequence which 
is applied must ensure that the quantum state is returned as accurately 
as possible to its original state at the end of the sequence. Note that even 
in the absence of errors the qubit will only return to its initial state at 
certain points in the decoupling cycle, and so the quality of dynamical 
decoupling can only be properly assessed at the end of a cycle, or at least 
of a shorter sub-cycle, just as the quality of CPMG refocusing should only 
be considered after an even number of 180◦ pulses. 

There are three significant features that need to be considered when 
designing a dynamical decoupling sequence: the spacing between the 
180◦ pulses, the design of individual pulses, and any phase modulation 
which is applied to successive pulses. The choice of spacing depends on 
the noise spectrum of the interaction to be refocused. If the interaction is 
static then it suffices to apply a single pair of spin echoes, each of which 
refocuses the undesired interaction during its own echo period and 
which in combination act as an identity operation. If, however, the 
interaction is time varying, for example due to diffusion [376] or 
chemical exchange [586], then the interaction is only effectively sup
pressed if the 180◦ pulses are applied rapidly in comparison with the 
variation [587]. 

This dependence of suppression of an interaction on pulse spacing 
can be used to measure the spectrum of the interaction, or to distinguish 
between systems according to their sizes [588,589], but it may simply be 
desired to suppress the interaction as far as possible. The obvious 
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approach is to apply the echoes as fast as possible, culminating in 
continuous dynamical decoupling, in which pulses are applied back to 
back, just as they normally are in conventional decoupling. In practice 
the performance of rapid dynamical decoupling initially improves as the 
pulse spacing is reduced, but beyond a certain point the damaging ef
fects of errors in the pulses dominate over improved suppression, and 
the best performance is normally seen for some small but non-zero pulse 
spacing, as discussed in Section 11.1. It can also be desirable to keep 
space between pulses in order to reduce the total RF power necessary 
[590]. 

Surprisingly, the best performance is not always seen with evenly 
spaced echoes. Uhrig dynamical decoupling, discussed in Section 11.2, 
involves a carefully chosen set of unequal pulse spacings. This result was 
described as “the first case of this framework [QIP] enabling magnetic 
resonance (MR) applications” [591], and is certainly one of the most 
relevant insights from QIP for conventional NMR. 

11.1. Rapid dynamical decoupling 

With rapid dynamical decoupling it is important to minimise the 
effects of systematic errors in the driving fields on the state of the sys
tem, through a mixture of phase sequences and composite pulses [464]. 
For simplicity I will consider the case of a single spin in the presence of 
phase noise, due to variations in the local magnetic field strength. If 
these variations arise from B0 inhomogeneity they will be static, unless 
molecular motion causes them to fluctuate. If they arise from couplings 
to other spins, then fluctuations can also occur due to relaxation of the 
coupling partners. Whatever the cause, the effect can be modelled as an 
additional z interaction, which varies both across the ensemble and in 
time. Spin states along z will be unaffected, but states in the xy plane will 
be dephased by the interaction. Variation across the ensemble can be 
suppressed by a simple spin echo, but variation in time requires a series 
of echoes, naively with a spacing short compared with the timescale over 
which the interaction varies. 

This long sequence of spin echoes requires a correspondingly large 
number of 180◦ pulses, and if these are not perfect then errors, such as 
pulse strength or duration errors and off resonance effects, will build up. 
However, it is a remarkable feature of the CPMG sequence that these 
errors largely cancel out on even-numbered echoes for initial states 
aligned along the pulse direction. Specifically, if the 180◦ pulses are 
applied along x, corresponding to NOT gates, and the initial spin state is 
also aligned along x, then a single spin echo gives a signal which is not at 

full strength but instead is reduced quadratically by both pulse strength 
errors and off resonance effects. If the initial spin state is aligned along y 
or z then the spin echo causes the state to be inverted, once again with 
quadratic errors. On the second echo, however, the error for a state 
initially along x is reduced to fourth order, while states along y or z are 
returned to their original direction but retain the quadratic error terms. 
Related effects are seen in spin locking experiments [592]. 

For this reason a CPMG sequence is much better at preserving qubits 
in one direction (aligned with the control field) than any other. If the 
pulses are instead applied alternately along ±x then initial states along y 
now exhibit only fourth order error dependence, while x and z show 
quadratic errors. Note that states initially along z are naturally invul
nerable to phase noise, and so the effects of the CPMG sequence are 
purely damaging in this case. More complex behaviour can arise in more 
realistic situations [593,594], but the broad conclusions are unaffected. 

One solution is to use a more complex phase sequence, such as XY-4 
[595,596], in which the 180◦ pulses are applied alternately along x and 
y. In this case the initial state is only restored after every fourth pulse, 
but the error tolerance is greatly improved, with fourth order errors for 
initial states along x and y and sixth order errors for initial states along z. 
As a consequence, XY-4 dynamical decoupling is moderately effective at 
preserving all initial states even for large numbers of echoes [464], as 
shown in Fig. 11. 

To gain further improvements one could use a longer sequence, such 
as XY-8 [465,597,598], but an alternative approach is to replace the 
180◦ pulses with composite pulses [599]. For use with conventional 
decoupling, composite pulses should be optimised to act as inversion 
pulses, but for dynamical decoupling it is important that the pulses act as 
universal rotors, sometimes called class-A composite pulses, which 
perform well for all initial states [444]. A particularly useful group of 
composite 180◦ pulses is obtained by using an odd number of 180◦

pulses with carefully chosen phases, particularly when these phases are 
chosen to be time symmetric [394]. Among such pulses the sequence 

18030 1800 18090 1800 18030 (89)  

which is sometimes called the Knill pulse [464,465] is particularly 
suitable; note that as usually described this does not implement a NOT
gate, but this can be remedied by offsetting all the phases by 210◦ [394] 
to give 

180240 180210 180300 180210 180240. (90)  

Fig. 11. Simulated performance of three different approaches to rapid dynamical decoupling: (a) CPMG, (b) XY-4, and (c) KDD4. The plots show a fidelity measure 
averaged over initial states along x,y, and z, appropriate for a qubit memory, after a total of 180 spin echoes, in the presence of both pulse strength errors ∊ and off- 
resonance effects f. Fidelity contours are drawn at six infidelity levels, logarithmically spaced between 10− 1 and 10− 6, and control errors cover a range of ±10%, 
parameterised as fractions of the driving field strength [394]. CPMG only performs well when control errors are negligible, reflecting the poor preservation of 
magnetisation perpendicular to the control fields, but the XY-4 sequence is a vast improvement. A similar gain is seen for KDD4 (that is, using the Knill pulse phases 
as an inner phase modulation cycle with XY-4 outside this to give a twenty-step cycle) where only the two highest contours are visible. If the Knill pulse is replaced by 
a nine pulse sequence, as described in the text, the fidelity is above the highest contour (infidelity below 10− 6) across very nearly the entire range conside.red 
(not shown). 
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This pulse performs a NOT gate with tolerance of both pulse strength 
errors and off-resonance effects, and unlike some alternatives has good 
tolerance of simultaneous errors [394]. 

Composite pulses of this kind can be used in two different ways. The 
obvious approach is to replace each 180◦ pulse in a decoupling sequence 
with a composite pulse, but for the Knill pulse this increases the number 
of pulses used, and thus the total power applied, by a factor of five, 
unless the spacing between the refocusing pulses is increased to 
compensate. Alternatively, the spacing can be left unchanged, and the 
phases of the Knill pulse imposed as a phase cycle. This must then be 
combined with XY-4 phase cycling to get a complete cycle of length 20. 
This second approach, sometimes called Knill dynamical decoupling 
[464,600,601], is the most effective. 

This final approach could in principle be extended by using even 
more effective composite pulses, such as the sequence of nine 180◦

pulses with phases 

α, β, β, β − π, 2β − 2α, β − π, β, β, α (91)  

where 

β = 2α+ arccos[ − (1+ 2cosα)/2] (92)  

and 

α = − arccos[(4 −
̅̅̅̅̅
10

√
)
/

4], (93)  

so α ≈ − 77.9◦ and β ≈ − 20.6◦, which has exceptional tolerance of both 
pulse strength errors and off-resonance effects [394]. However its per
formance in practice has yet to be explored. 

It is also possible to combine dynamical decoupling with optimal 
control [599,602], replacing hard pulses with shaped pulses; pre
liminary explorations suggest that this will be a promising approach 
[603]. 

11.2. Uhrig dynamical decoupling 

The calculations shown in Fig. 11 assumed that the dephasing being 
refocused is unknown but constant during the decoupling period, or 
equivalently that it varies across the ensemble of spins being observed 
but does not vary in time. If this were in fact the case it would not be 
necessary to use rapid decoupling, as a single spin echo would be suf
ficient to refocus such static dephasing. It might be desirable to use two 
spin echoes, in order to restore the original state, or to use four spin 
echoes to permit the use of the XY-4 phase sequence, but there is no 
reason to perform large numbers of echoes. 

This changes if the dephasing varies with time. The original CP 
(method B) [584] and CPMG [585] sequences were designed to tackle 
losses due to diffusion within magnetic field gradients, and in this case 
the conventional approach is to apply evenly spaced echoes as rapidly as 
possible. However, dephasing noise can arise for a variety of reasons, 
and the assumption that even spacing is always best is incorrect. An 
early result showed that concatenated dynamical decoupling could be 
more effective than the standard periodic approach [604,605], but other 
than placing some pulses back-to-back this is still built around even 
spacings, and ultimately achieves better performance by applying pulses 
very rapidly. 

A more radical departure is Uhrig dynamical decoupling [606,607], 
which starts by assuming that the number of refocusing pulses will be 
small, and asking how best to separate them. The original result assumed 
a particular model for dephasing noise, but was subsequently shown to 
apply more generally for slowly varying noise [608,609]. If a total time 
period T is to be divided into spin echoes by n pulses then the optimal 
times for these pulses are given by 

tj = Tsin2
(

πj
2n + 2

)

(94)  

where j runs from 1 to n. For the case n = 2 this places pulses at T/4 and 
3T/4, reproducing the standard periodic pattern, but for higher n the 
pulses are concentrated towards the start and end of the time period. The 
case n = 4 is shown in Figs. 12 and 13: for a periodic pattern such as 
CPMG or XY-4 pulses are placed at odd multiples of T/8, producing 4 
echoes of length T/4, but for Uhrig decoupling the first and last echoes 
are shortened to 0.19T while the middle echoes are lengthened to 0.31T. 

The conventional approach is designed to refocus a constant offset, 
but will also refocus a frequency offset which varies linearly with time: 
indeed a set of symmetrically arranged pulses will refocus any offset 
variation which is an odd function of time. However an offset which 
varies quadratically with time is not refocused, but results in an overall 
buildup of phase. (The offset functions shown in Fig. 12 are shifted 
Legendre polynomials, which are mutually orthogonal, and so the 
quadratic function is a purely quadratic variation, with no constant or 
linear term.) By contrast, choosing the pulse spacing according to 
Uhrig’s formula leads to all three terms being refocused. 

Uhrig decoupling can be understood by considering the noisy 
dephasing Hamiltonian in a toggling frame generated by the pattern of 
180◦ pulses. The noise can be decomposed into components of different 
frequencies, and while the static component will be cancelled by any 
pattern of echoes, other frequencies will only be directly cancelled by 
echoes which are stroboscopic with that frequency. Uhrig decoupling 
considers the overall degree of suppression for the whole sequence of 
echoes as a function of frequency, and expands the response as a Taylor 
series around zero-frequency. It can be shown [591,610] that the times 
in Eq. 94 set all the leading terms in this expansion to zero, resulting in 
good suppression in a broad band around zero-frequency. The truly 
optimal approach depends on the precise spectrum of the relevant noise 
sources [611]. The original analysis assumed instantaneous refocusing 
pulses, but the effects of finite pulse width can be included [612]. 

Uhrig decoupling has been demonstrated experimentally in a range 
of systems, including NMR [591,613–617], electron spin resonance 
[618,619], and trapped ions [620,621], and in general the expected 
benefits are seen. One significant disadvantage is that all pulses are 
applied with the same phase, and thus the method suffers from the same 
sensitivity to pulse errors as seen in CPMG, although the number of 
pulses used can be significantly smaller. This is not always important in 
conventional NMR, as the initial state of the magnetization is often 
known beforehand, and the pulses can be aligned with that state, but it is 
a more significant issue for quantum memories, which must work for all 
states. It is, of course, possible to use composite pulses to tackle this, but 
this must be done by simply replacing each pulse in the Uhrig sequence 
by a composite pulse, rather than using the pulse design to create an 
inner phase cycle. Optimized pulses have also been specifically designed 
for use with Uhrig dynamical decoupling [622–625]. These ideas are 
now being combined with methods from shaped pulse design to develop 
excitation sequences which are robust to time-varying interactions 
[626]. 

12. Conclusions 

As was predicted in the early days of the field [26–29,97], NMR has 
not led to a general scalable implementation of a quantum computer, 
and in recent years it has ceased to lead the field in the implementation 
of small demonstration devices. Superconducting quantum computers 
[627] are now available with many more qubits than are available in 
NMR implementations [518,628], while ion trap implementations can 
beat NMR in speed and precision [629,630], and reconfigurable atom 
arrays have been used to demonstrate multiple logical qubits using 
advanced error correcting codes [631]. Despite this NMR implementa
tions can still in practice compete with other approaches in at least some 
cases [143]. 

As was also predicted the main role of NMR QIP has become a route 
for technology transfer, in both directions [29,30]. The long-standing 
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emphasis within conventional NMR on composite pulses and shaped 
pulses has led to these ideas being transferred into other fields where 
precise quantum control is important [630]. Particular methods have 
been developed within NMR QIP, among which the GRAPE algorithm 
stands out as the most generally useful approach. GRAPE has also been 
used to design shaped pulses for applications in conventional NMR, and 
it is gradually becoming understood within the NMR community that 
shaped pulses designed with optimal control can out-perform those 
designed by more conventional heuristic processes. The application of 
these ideas to electron spin resonance has been slower, reflecting the 
much greater complexity of implementing arbitrary waveforms at these 
high frequencies and short pulse widths [632], but initial experience has 
proved promising [633]. A second important area is of developments in 
decoupling arising from the field of dynamical decoupling, and espe
cially Uhrig dynamical decoupling, in the presence of time-varying in
teractions. Although the field is unquestionably becoming quieter, 
interesting and important things still remain to be done. 
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Glossary 

BB1: broad band number one 
BFGS: Broyden–Fletcher–Goldfarb–Shanno 
BURP: band-selective uniform response pure-phase 
CCCP: concatenated composite pulse 
CP: Carr–Purcell 
CPMG: Carr–Purcell–Meiboom–Gill 
CRAB: chopped random basis 
ENDOR: electron nuclear double resonance 
GOAT: gradient optimization of analytic controls 
GRAPE: gradient ascent pulse engineering 
GRAWME: gradient ascent without matrix exponentiation 
HMQC: heteronuclear multiple quantum coherence 
HSQC: heteronuclear single quantum coherence 
L-BFGS: limited memory Broyden–Fletcher–Goldfarb–Shanno 
MR: magnetic resonance 
NMR: nuclear magnetic resonance 
QIP: quantum information processing 
RF: radio frequency 
SCROFULOUS: short composite rotation for undoing length over and under shoot 
TROSY: transverse relaxation optimized spectroscopy 
WALTZ: wideband alternating-phase low-power technique for zero-residual-splitting 

J.A. Jones                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0079-6565(24)00003-7/h3135
http://refhub.elsevier.com/S0079-6565(24)00003-7/h3135
https://doi.org/10.1038/d41586-023-03854-1
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.1038/nature25737
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1016/j.pnmrs.2023.04.003
https://doi.org/10.1016/j.jmr.2012.02.013
https://doi.org/10.1016/j.jmr.2012.02.013

	Controlling NMR spin systems for quantum computation
	1 Introduction
	1.1 Structure and scope

	2 DiVincenzo criteria
	3 States
	3.1 Mixed states
	3.2 Fidelities

	4 Choice of spin system
	4.1 Choosing nuclei
	4.2 Systems with two spins
	4.3 Systems with three spins
	4.4 Systems with four spins
	4.5 Larger spin systems

	5 Quantum control
	5.1 Unitary and non-unitary evolution
	5.2 Quantum logic gates
	5.3 The control problem
	5.4 Global phases

	6 Optimal control
	6.1 Optimization algorithms
	6.2 Fidelity measures
	6.3 Robustness to errors
	6.4 General and restricted forms
	6.5 Composite pulses
	6.6 Choosing an approach

	7 GRAPE
	7.1 Approximate derivatives
	7.2 Exact derivatives
	7.3 Approximate evaluation of propagators
	7.4 Phase-only control
	7.5 Subsystem control
	7.6 Single-spin control
	7.7 Decoupling passive spins

	8 Pseudo-pure states
	8.1 Single spins
	8.2 Two spins
	8.3 Preparation methods
	8.4 Practical methods
	8.5 Fidelities

	9 Closed-loop control
	9.1 Randomized benchmarking

	10 Refocusing networks
	10.1 Walsh–Hadamard patterns
	10.2 Time optimal refocusing
	10.3 Engineered networks

	11 Dynamical decoupling
	11.1 Rapid dynamical decoupling
	11.2 Uhrig dynamical decoupling

	12 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


