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Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple
quantum computing experiments and the worst technology for building large scale quantum computers that has
ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s
quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further
progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now
largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of
developing methods that can be applied in other more scalable technologies and within conventional NMR.

However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle
demonstrations of simple quantum information protocols.

1. Introduction

Quantum information processing (QIP) is the use of explicitly
quantum mechanical systems, exhibiting phenomena such as super-
position and entanglement, to perform information processing tasks.
Traditionally the field can be divided into two broad areas: quantum
computation is about the performance of computational tasks more
efficiently than is possible for any classical computer [1], while quantum
communication largely considers tasks which are simply impossible by
purely classical means [2]. Closely related to quantum computation is
quantum simulation, in which one quantum mechanical system is used
to model, and thus study, the behaviour of another [3]. The distinction
between computation and simulation is not always simple or clear [4],
and the design of general-purpose quantum simulators is an active area
[5]. Another growing area is quantum sensing, in which non-classical
states of light or atoms are used to achieve a measurement precision
beyond the standard quantum limit [6].

Over the last forty years QIP, and particularly quantum computing,
has moved from a purely theoretical domain explored only by a few
committed enthusiasts to a thoroughly mainstream area of science
[7-15]. NMR experiments have played a small but significant role in
this: early discussions of how NMR quantum computers could be
implemented [16-20] were soon followed by the first implementations
of complete quantum algorithms [21-24]. Indeed for a few years NMR
was in many ways the leading quantum computation technology,
culminating in the first implementation of Shor’s quantum factoring
algorithm [25]. This rapid progress was, however, matched by a cor-
responding concern: the difficulty of preparing NMR spin systems in
pure states, a consequence of the tiny energy gap for nuclear spin levels,
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almost rules out attempts to build large scale devices [26,27]. Even if
this were resolved many issues would remain, such as the difficulty of
designing spin systems with very large networks of coupled spins which
permit sufficiently selective excitation [28]. For these reasons NMR
quantum computing has been described as a demonstration technology
[29], and as a field for developing tricks and techniques which will find
their final applications in other fields [30].

The role of NMR in studies of quantum communication has been even
more limited for two basic reasons. Simple quantum communication
protocols, such as BB84 quantum cryptography [31], typically rely on
the effects of projective measurements on single quantum systems, and
the absence of true projective measurements in ensemble NMR systems
makes this essentially impossible. More advanced quantum communi-
cation protocols, such as E91 quantum cryptography [32] and quantum
teleportation [33] rely on distributing entanglement over significant
distances [34,35]. This is not really possible in NMR, where the entan-
glement is confined within a single molecule, and although the tele-
portation circuit has been demonstrated in a three spin system [36], the
information was only moved over a few angstroms.

The situation for quantum sensing with NMR is the reverse: here
significant results have been demonstrated for entanglement-enhanced
magnetic field sensing [37-39], but these experiments are in reality
little more than relabelled versions of the traditional HMQC [40] and
HSQC [41] experiments, reflecting the close relationship between
Schrodinger Cat states and maximal multiple quantum coherences [42].

1.1. Structure and scope

In my first review in this journal [43] I provided a general
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introduction to quantum computation and the main methods used for
implementing it in NMR spin systems, while my second review [44]
sought to provide a fairly complete summary of all the major experi-
mental approaches in use at that time. These two reviews bracket a very
busy period in which rapid progress was made and a large number of
papers were published by many different research groups. Since 2011
the field has become quieter, with many of the remaining researchers
tending to concentrate on a small number of particular topics. In this
review I will begin with a brief introduction, followed by a summary of
popular spin systems, and will then concentrate on some areas of current
interest. These mostly relate to quantum control, that is the design of
composite pulses, shaped pulses, and pulse sequences, to perform
particular transformations of quantum states [45].

Throughout the text I will assume familiarity with conventional NMR
methods and with elementary quantum mechanics, but no detailed fa-
miliarity with quantum information theory. I will, however, discuss
some conventional NMR themes in the context of quantum information,
in part to clarify how the two notations interrelate, but also to indicate
some limitations on the situations in which these conventional NMR
techniques can be applied.

2. DiVincenzo criteria

The suitability of any physical system for building a quantum com-
puter is traditionally assessed using the five DiVincenzo criteria [46],
briefly summarised in Table 1. Although this list is arguably not the best
way to think about realistic proposals [47], it does provide a simple
structure enabling different physical technologies to be easily compared.
As we will see for NMR, the central conclusion is that while the con-
struction of small demonstration systems is straightforward, there are
enormous difficulties in scaling these up to the sizes required for a
genuinely useful device.

1. A scalable physical system with well characterized qubits. The basic
approach in NMR is simple, using a single spin-% nucleus in a small
molecule to represent each qubit. I will mostly not consider proposals
which use electron spins [48-50] or which combine electron and nuclear
spin qubits [51-53]. I will also not consider proposals involving high-
spin nuclei, such as schemes that represent a qutrit using a spin-1 nu-
cleus in a liquid crystal solvent [54,55] or schemes that use the four
levels of a spin-3 nucleus [56-58] or the eight levels in a spin-2 nucleus
[59,60] to represent two or three qubits in one system. Similarly, I will
largely only consider small molecules in isotropic liquids, rather than
systems in the solid state [61-65] or systems with partial local ordering
induced by liquid crystal solvents [66-78].

As discussed in Section 4, it is straightforward to find suitable spin
systems to represent small numbers of qubits, but the difficulty increases
sharply with the number of spins required. This is the first reason why
conventional NMR does not provide a realistic route to a useful quantum
computer.

2. The ability to initialize the state of the qubits to a simple fiducial state,
such as |000...). In many approaches to quantum computing this is done
by some sort of cooling process: sometimes by direct cooling to the en-
ergetic ground state, but more frequently by indirect approaches, such

Table 1

A summary of the 5 DiVincenzo criteria and how they might be met
in NMR systems. Although all 5 criteria are met well enough for
simple demonstrations, none of them are met in a genuinely scalable
way.

Criterion NMR implementation

1. qubits 1 .
spin-; nuclei

2. initialisation

3. low decoherence

4. logic gates

5. measurement

pseudo-pure states
long T>

pulses and delays
NMR spectrum
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as optical pumping, which allow a chosen state to be selectively pre-
pared [79]. Cooling is a generally impractical approach for NMR
quantum computing, not because the temperatures required (of the
order of mK) are unattainable, but rather because the sample must
normally be kept in the liquid state to obtain the desired motionally
averaged Hamiltonian. While a wide range of signal enhancement ap-
proaches have been demonstrated [80], which reduce the effective spin
temperature while keeping the molecular lattice close to room temper-
ature, the enhancements obtainable are not normally high enough to
reach the desired pure spin states [28]. The sole exception to this is the
use of para-hydrogen [81], but as yet this has only been used to produce
pure states for two-spin systems [82].

Instead of preparing pure states the standard approach for NMR
quantum computing is to prepare pseudo-pure states, also called effective
pure states [16-20], as discussed in Section 8. This process cannot be
performed scalably [26,27], once again limiting NMR QIP to relatively
small spin systems.

3. Long relevant decoherence times, much longer than the gate operation
time. In NMR implementations this means that the slowest interactions
used to implement gates, usually the scalar couplings between spins,
must be fast compared with the fastest relaxation time, usually taken as
the spin-spin relaxation time, T, although in reality the relaxation
times of multiple quantum coherences may be more relevant. Naively
this means that coupling patterns must be well resolved, but this is a
sufficient rather than a strictly necessary condition, as inhomogeneous
broadening, which makes T, less than T, can be refocused [83].

However it is important to realise that much longer in this require-
ment means above the fault tolerant threshold [84]. This threshold de-
pends on the error correction code chosen and the overhead one is
prepared to tolerate [85], but in practice a ratio of at least 100 is
essential and a factor closer to 10,000 is preferable. Even the lower limit
is challenging, and the higher ratio is far out of reach, and so performing
extended quantum computations with NMR is not currently possible.

4. A “universal” set of quantum gates. Gate universality, which is the
ability to approximate any desired evolution using a network of gates
from some finite set, is a much studied topic in QIP. Very early papers
assumed that three-qubit gates would be required [86], but a key early
result was that two-qubit gates suffice [87,88], and indeed that almost
any two-qubit gate is universal [89,90]. More practically the combina-
tion of a universal set of single-qubit gates and any non-trivial two-qubit
gate, such as the controlled-not gate [91], is universal [92]. It can also
be shown that two particular gates, traditionally taken as the Hadamard
gate and the fourth root of Z gate, suffice to form a universal set of single-
qubit gates [93]. More importantly for NMR implementations, the set of
single-spin rotations around axes in the xy-plane, corresponding to the
set of spin-selective pulses, combined with free evolution in the presence
of scalar coupling interactions, is universal [94].

As hinted at above, one central problem for gate implementation in
NMR QIP is the problem of spin-selective excitation. Most other pro-
posals for implementing quantum computation ultimately rely on some
form of spatial selection, in which different qubits are implemented
using physical systems in different regions of space, but this is not
possible in NMR systems, which are built around a macroscopic
ensemble of rapidly tumbling systems. Instead the qubits are distin-
guished using their different resonance frequencies.

Such frequency selection is trivial in heteronuclear spin systems, but
there are only a finite number of spin- nuclei available. In homonuclear
spin systems the chemical shift interaction provides sufficient dispersion
to distinguish small numbers of qubits, but the finite range of chemical
shifts once again limits this approach to a fairly small number of spins of
any one nuclear species [28]. Some common homonuclear and hetero-
nuclear spin systems are discussed in Section 4, and the design of robust
spin-selective rotations is a central feature of Sections 5-7.

A second central problem is the design of refocusing networks to
remove unwanted spin-spin couplings. Although free evolution under
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the natural background Hamiltonian is formally universal when com-
bined with single-qubit gates, it does not normally correspond naturally
to a conventional logic gate. More fundamentally NMR quantum com-
puters differ from most other designs in that these logic gates are “al-
ways on”, and have to be turned off when they are not required [95].
Approaches for doing this efficiently are discussed in Section 10. Related
to this is the problem of turning off couplings to spins outside the spin
system used for information processing. In conventional NMR this is
usually achieved by decoupling, but within QIP it can be more appro-
priate to use dynamical decoupling, in which the refocusing pulses are
applied to the system (the spins of interest) rather than the surroundings
(their coupling partners), as explored in Section 11.

5. A qubit-specific measurement capability. Qubit measurement is
obviously important as there is no point in performing a computation if
the result cannot be read out in some way. However quantum mea-
surement is very different from classical measurement. In the classical
world a measurement can be thought of as revealing a pre-existing state
of a classical object, and can be performed without affecting the state,
but quantum measurement is nothing like this [10,11]. Every mea-
surement process has an associated set of outcomes, which form a
complete orthonormal basis for the system, and the result of a mea-
surement is to project the system at random into one of these possible
outcome states, with the outcome probabilities given by the square
moduli of the corresponding amplitudes. For a measurement performed
in the computational basis only these basis states can be measured non-
intrusively: any measurement on a superposition state will return one of
the contributing basis states at random, with any entanglement in the
superposition reflected in correlations between different bits in the
outcome.

In NMR quantum computing, measurement is achieved by observing
the NMR spectrum, either directly or after applying excitation pulses to
one or more spins. This is not a true quantum measurement, but rather
the determination of an ensemble averaged expectation value for some
traceless observable [17]. If the spin system is in an eigenstate before the
measurement then this state can be identified from the intensities of
lines in appropriate multiplets [44], and in some special cases the
ensemble nature of NMR can be useful [96]. However, for algorithms
which result in a superposition of possible answers, one of which is
selected at random by the measurement process, ensemble averaged
results are not useful, and in NMR implementations of such algorithms it
is common to note simply that the observed NMR signal matches the
simulated predictions [25]. For quantum protocols that result in
entangled states [97], which can be related to multiple quantum co-
herences [43,94], the outcome may be particularly difficult to monitor
directly, although in some cases useful simple measurements can be
found [82,98].

One way to overcome this is to use quantum state tomography, in
essence measuring enough different observables that it is possible to
completely reconstruct the density matrix, or at least its traceless part,
the deviation density matrix [20,99-102]. Several methods have been
used to increase the efficiency of quantum state tomography in NMR
[103-105], and more generally [106-108], but the exponential growth
in the number of elements in the full density matrix makes complete
reconstructions very challenging for large spin systems.

Furthermore, the lack of projective measurements means that qubits
cannot be easily reset. Quantum error correction protocols [109-111]
depend on access to ancilla qubits in a well-defined state, typically |0), to
record the errors which have occurred. The error correction process
needs to be carried out repeatedly, which requires either that the an-
cillas are reset to their initial state or a continuous supply of fresh an-
cillas is available. Although single rounds of error correction have been
demonstrated in NMR [112,113], the absence of a reset process renders
effective error correction difficult in NMR systems [114].
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3. States

There is an exact correspondence between the pure states of an iso-
lated spin-} nucleus and a qubit, and both are commonly described using
the Bloch sphere picture. For a single qubit a general state can be written
as

[w) = col0) +c1|1) (@)

where ¢y and c; are complex numbers, subject to the normalisation
constraint that

leo* + e[ = 1. (2
Given an ensemble of identical copies of this system experiments can be
performed which provide information on the magnitudes of ¢y and c;,
and on their relative phase, but there is no method whatsoever to obtain
any information on the absolute phases of ¢y and c;. Equivalently, the
state |y) is completely indistinguishable from the state

') = " ly) = e7¢o|0) +e"ci[1), 3
so the global phase y has no physical meaning. One common approach is
to choose y so that the amplitude of the |0) component is real and pos-
itive, which combined with normalisation enables a single qubit to be
described as

ly) = cos(6/2)|0) +e”sin(6/2)1), @
with 0<f6<7 and 0<¢ < 2z. Thus any state of a single qubit can be
represented using spherical polar coordinates as a point on the surface of
a unit sphere, which is the Bloch sphere.

Exactly the same approach can be used within NMR, with the
eigenstates |a) = |+1) and |) = |—1) of a spin-1 nucleus playing the
roles of |0) and |1), and the Bloch vector simply connecting the origin
and an appropriate point on the Bloch sphere. The main difference is
that the states used in NMR are mixed states, and so strictly lie within the
Bloch sphere rather than on its surface. It is, however, common to ignore
this, as discussed below. The use of NMR operator notation also leads to
the Bloch vector normally being described in Cartesian notation rather
than spherical polars.

3.1. Mixed states

The states described in Eq. 1 are pure states, which correspond to the
quantum system being in a single well defined state. This state need not
be an eigenstate, but it is unitarily equivalent to an eigenstate, as there
will always be some unitary transformation that interconverts |0) and
|w). A more general possibility is that the qubit can be in a mixed state,
which is not a single well defined state but rather a probabilistic mixture
of such states.

Mixed states cannot be described using kets, but are instead
described using density matrices of the form

p =2 _nlvi)wl.

(5)

where the p; are probabilities, and so must be real numbers with 0<p;<1
and ) jp; = 1. This form shows that density matrices must be Hermitian

(that is p = p'), and so must have an orthonormal eigenbasis [10]. They
must also be positive semidefinite, which means that their eigenvalues
must be non-negative, that is positive or zero. Two important special
cases are pure states, which have a single eigenvalue equal to 1 with the
rest being 0, and the maximally mixed state, which is an equal mixture of
all the eigenstates of the system. For a qubit this takes the form
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—_E =
2 0 1 ©)
2

For a single qubit the situation is particularly simple. Considering the
state in its eigenbasis it is clear that any mixed state can be written in the
form

p=plw)wl+ 1 =p)lw ), ™)
for some state |y), where
ly) = €110} — ¢ [1) ®)

is the state orthogonal to |y), and we can choose the states such that
ly) has a probability equal to or greater than that of [y), so that 1p<1,
with a pure state corresponding to p = 1. In particular the maximally
mixed state can be decomposed not just as an equal mixture of |0) and
|1), but also as an equal mixture of any state and its orthogonal partner,

11 | N
FE =3 w3l )| ©)]
This allows Eq. 7 to be rewritten as
1
p=2(1=p)5E+(2p—Dlw)wl, 10

corresponding to a mixture of the maximally mixed state and an excess
population of |y). This means that every state of a single qubit is a
pseudo-pure state. Since the maximally mixed state gives no signal in
NMR experiments the behaviour of p is almost indistinguishable from
that of the corresponding pure state |y), differing only in a reduced
signal intensity. For this reason it is common within NMR to treat mixed
states of single spins as if they were pure states. However it is necessary
to be much more careful when describing systems with multiple spins, as
discussed in Section 8.

Within conventional NMR a different but related description is nor-
mally used. The excess component can be rewritten using

Wil =5 (W)l +ly ) D) +%(\w><w| LAk

(1)

where I, is an angular momentum operator parallel to |y), defined by

I, = sinfcos¢ I, + sinfsing I, 4- cosb 1, (12)

with Cartesian components corresponding to the Bloch vector. Thus

p:%E+(2p*1)Iw> a3
where the fact that I, is traceless ensures that the maximally mixed term
is always L E to get the correct trace. The conventional NMR approach is
then to drop not only the maximally mixed state but also the term
describing the size of the polarisation, here written as 2p —1, or equiv-
alently to assume that p = 1, and so describe the spin state as I,,. While
this simplified approach can be highly successful it must be remembered
that angular momentum operators are not proper density matrices, as
they are not positive semidefinite with unit trace, and so cannot always
be naively substituted into formulae derived for density matrices.

3.2. Fidelities

The concept of state fidelity is an important one in quantum infor-
mation theory, providing a measure of how similar two quantum states
are. For two pure states it is defined simply as the square modulus of the
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inner product,

Fyo = WI) = i) (@ly). a4

which has limiting values F = 1 when |¢) = |y) and F = 0 when |¢) =
|w*). This definition extends by linearity to give the fidelity between a
pure state and a mixed state,

Fyp = (wlply). 15)
The extension to comparing two mixed states, p and o, is more compli-
cated, and the naive generalisation Tr(po) is not suitable. The correct
fidelity in this case is the Uhlmann-Jozsa fidelity [115,116] which is
defined as

2

Fr = (58]
where the modulus of an operator is defined by
|A] = VAAT. a7n

Note that all proper density matrices are Hermitian and positive semi-
definite, and so /p and /o exist, and are also Hermitian and positive
semidefinite. This leads to the more usual form

b= (o5 )

The fearsome appearance of this equation, especially to readers who are
unaccustomed to matrix square roots, has led to many attempts to find
simpler formulae [117,118], but none of these fulfil all of the six
properties achieved by the Uhlmann-Jozsa fidelity [116], four of which
are essential and two of which are highly desirable. In particular a fi-
delity should lie between 0 and 1, achieving a value of 1 if and only if
p = o, should be symmetric between p and o, should be invariant under
unitary transformations, and should reduce to the form of Eq. 15 when p
or o is pure.

The naive generalisation Tr(po) does not meet these requirements:
consider the simple example

18)

0
19)

for which Tr(p?) = 3, showing that this form does not reach a value of 1
for p = 0. The highest value which can be reached by any proper density
matrix is achieved by

(10
=10 o
for which Tr(po) = %. It is also impossible to “patch up” this definition
without introducing other problems. In contrast the Uhlmann-Jozsa fi-
delity behaves correctly. This can be seen by calculating the fidelity

between Eq. 19 and a general mixed state written in NMR notation(see
Fig. 1)

(20)

o= %E + r(sinfcos¢ I, + sindsing I, + cosd I.) (21)
for which the fidelity is easily seen to be independent of ¢, so without
loss of generality we can assume ¢ = 0. Plotting this fidelity as a func-
tion of rand 6, as shown in Fig. 2, gives a clear maximum atr = Jand 6 =
0, where a level of 1 is achieved, exactly as expected.

Thus it appears that the square roots cannot be entirely avoided, but
it is possible to recast the Uhlmann-Jozsa fidelity into a different form
which is much easier to calculate numerically. In particular it can be
shown [119] that provided p and ¢ are proper density matrices then the
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Fig. 1. Representing a pure state of a single qubit as a point on the surface of
the Bloch sphere using spherical polar coordinates. This is entirely equivalent to
the Bloch sphere used in conventional NMR, where Cartesian coordinates are
more common.
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Fig. 2. The Uhlmann-Jozsa fidelity between the target state, Eq. 19, and the
general state, Eq. 21 for the case ¢ = 0, plotted over the range 0<r<1, and
0<0<z. Contours are plotted at fidelities of 0.9, 0.99, 0.999, and 0.9999,
revealing a clear maximum at r = 0.5,6 = 0, corresponding to p = 1E + iL,.

form

Foo = [Tr(y75) | 22)

can be used instead. Furthermore it is not actually necessary to explicitly
find /pc as only its trace, which is equal to the sum of its eigenvalues, is
required, and it can be shown that these eigenvalues are equal to the
square roots of the eigenvalues of po. Using this efficient approach is it
possible to speed up the computation of the Uhlmann-Jozsa fidelity by
around a factor of ten [119].

4. Choice of spin system

When choosing a spin system for implementing an NMR quantum
computation it is necessary to find a molecular system containing the
right number of spin-1 nuclei in a coupled network. It is not necessary
that all the nuclei be directly coupled, but it is necessary that they all be
connected directly or indirectly [120] by some chain of sufficiently large
couplings.

The conceptually simplest approach is to use an entirely hetero-
nuclear spin system, as this makes selective addressing trivial, but this is
limited by the small number of suitable spin-l nuclei, and so many
implementations are at least partly homonuclear, containing two or
more spins of a particular nuclear species. With homonuclear systems a
key decision is whether to work with all the spins of a given type in the
same rotating frame, or to assign a separate frame to every spin,
sometimes called abstract reference frames [42]. This decision can be
sidestepped when there are only two spins of any given type, as in this
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case the two abstract frames will align at stroboscopic intervals [21]. In
principle the same decision must be made for fully heteronuclear sys-
tems, but here the universal practice is to assign each nuclear species its
own rotating frame, usually at or close to resonance with the single spin
of that type.

A further consideration in homonuclear systems is whether the
spin-spin couplings can be treated as weak. In practice this point is
frequently ignored and a weak-coupling Hamiltonian is regularly
assumed even when deviations are clearly visible in the NMR spectrum.
This is not, of course, a concern in heteronuclear systems.

4.1. Choosing nuclei

While there are a large number of spin-l nuclei which could in
principle be used, the choice in practice is strongly influenced by easy
availability of certain chemical systems [121] and of commercial NMR
equipment. There are six spin-] nuclei which occur with near 100%
natural abundance, but of these only three (*H, °F, and 3!P) have the
chemical versatility to be easily included in small organic molecules,
with the other three (3°Y,193Rh, and °Tm) being metals. To this short
list can be added '3C and °N, reflecting the relatively easy availability
of selective isotopic labelling and the wide availability of suitable dou-
ble, triple and quadruple resonance probes for chemical and biochem-
ical studies. In various combinations these five nuclei completely
dominate spin-1 quantum computing experiments. In one extreme case a
fully heteronuclear five-qubit computer was designed using all five
nuclei [122,123], which required the use of a custom six-channel probe
(including the 2H lock channel) [122].

Use of other spin- nuclei has been far more limited. A wide range of
exotic spins have been discussed from a theoretical perspective but
without experimental demonstrations [124,125]. The most important
experimental example is 2°Si, which has been used in star-topology
systems, in which a single 2°Si nucleus is surrounded by 12 [38] or
even 36 [126,127] 'H nuclei. By making all NMR measurements at the
29Si frequency the experiment is only sensitive to the 5% of the sample
containing a 2°Si nucleus, thus automatically selecting a labelled subset
of molecules.

This trick cannot be easily extended to systems containing two or
more such nuclei, limiting its applicability. A system containing two
silicon atoms will appear in the 2°Si spectrum as an equal mixture of the
two different “singly labelled” isotopomers, with much weaker signals
from the rare doubly labelled compound. As each isotopomer gives rise
to its own multiplet it is simple to separate the two signals, permitting
easy study of either of the two spin systems. This approach is quite
widely used with natural abundance 3C to extend a spin system
comprising 'H or '°F nuclei in an organic molecule, in effect adding a
single 13C nucleus without explicit labelling.

As well as considering the spin-system used to represent quantum
information it is also necessary to ensure that any other spins in the
molecule can be ignored. Clearly spin-0 nuclei, such as 60, can be
entirely ignored, and high spin nuclei, such as 2H, 4N, and 3%/%’Cl, can
be largely ignored, as their rapid quadrupolar relaxation acts to remove
the effects of any couplings to the spin-1 nuclei of interest. Furthermore,
labile 'H nuclei can be easily exchanged for 2H by dissolving in D,O.

It is also possible to ignore spin-} nuclei which are not coupled to the
main spin system: although such spins are visible in NMR spectra they
will not affect the evolution of the spins of interest. Here “not coupled”
really means having a coupling constant low enough to ignore, which is
a practical question rather than a matter of principle. For example, the
fully heteronuclear five-qubit computer mentioned above also contains
two N-methyl and two O-ethyl groups which are weakly coupled to the
main system. Most of these couplings are under 1 Hz, and can be ignored,
but the largest long range couplings were decoupled using selective
pulses [122].
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4.2. Systems with two spins

A two-spin system can only be either homonuclear or fully hetero-
nuclear, and both approaches have proved popular. The first NMR
quantum computing experiments were performed using either a pair of
1H nuclei in cytosine dissolved in D0 [21,24,96] or the combination of
a 'H and a '3C nucleus in '3C labelled chloroform dissolved in acetone-
de [22,23,128] or CDCl3 [129], see Fig. 3.

Many other HH systems have been studied, including 2,3-dibromo-
thiophene [18], uracil [130], 5-nitrofuraldehyde [131-133], coumarin
[131], and 5-bromothiophene-2-carbaldehyde [134], as well as a range
of systems synthesised from para-hydrogen [81,82,135,136]. Systems
involving a pair of coupled 3'P nuclei have also been explored [137].

For heteronuclear systems the choice of combining 'H with 3C is
very obvious, but the early choice of chloroform has some disadvantages
related to the relaxation of the 3C nucleus. This has a shortened T5,
arising from scalar relaxation of the second kind [138] caused by rapid
quadrupolar relaxation of directly bonded 3%/37CI nuclei, which limits
the number of quantum gates that can be performed. This is combined
with a very long T1, limiting the repetition rate if experiments are started
from the thermal equilibrium state. A popular alternative HC system
with slightly more balanced relaxation times is provided by labelled
sodium formate in D3O [139-143], or the closely related formic acid
[144], see Fig. 3. Experiments have also been demonstrated with
labelled dimethylformamide [105], where the methyl protons can sim-
ply be ignored. However, chloroform remains the overwhelmingly
popular choice [145-179].

Other heteronuclear combinations are less popular, perhaps just
because suitable probes are not quite so widely available. The combi-
nation of 'H and !°F has been demonstrated in 5-fluorouracil [180], a
convenient and readily available heteronuclear replacement for uracil.
Perhaps more interesting is the combination of 'H and 3!P, which was
originally demonstrated in phosphonic acid [181,182], which has a
particularly large scalar coupling (almost 650 Hz) between 3'P and the
directly bonded 'H. This system has subsequently been adapted to build
a tabletop two-qubit NMR device, called SpinQ Gemini [183,184], based
around dimethylphosphite, where the one bond coupling of almost
700Hz dominates over the long-range couplings to the methyl protons.
An even larger coupling, over 850Hz, is found between the directly
bonded '°F and 3P nuclei in sodium fluorophosphate [185-188].

4.3. Systems with three spins

A wide range of different three-spin systems have been explored.
Fully homonuclear systems (Fig. 4) have been led by studies of the three
13C spins in labelled alanine [101,112,120,189-210], but three 'H spins
in 2,3-dibromopropanoic acid [211-213] or in chlorostyrene [214,215]
or three !°F spins in bromotrifluoroethylene [100], 2,3,4-trifluoroani-
line [216], 4-bromo-1,1,2-trifluoro-1-butene [217], or iodotrifluoro-
ethylene [218-234] have also proved popular. Although '°F probes are
less widely available than 'H, the wide range of chemical shifts and the
large size of the scalar couplings makes '°F a tempting choice [100].

Among fully heteronuclear implementations (Fig. 5) the most
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Fig. 3. Popular two qubit heteronuclear systems include (a) chloroform and (b)
the formate anion, both with 3C labelling. Nuclei used as qubits are shown in
red boldface, and the other nuclei can be neglected.
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Fig. 4. Popular three qubit homonuclear systems include (a) 13C labelled
alanine and (b) iodotrifluoroethylene. The three main qubits are shown in red
boldface, but these molecules have also been extended to four qubit partly
heteronuclear systems by including the nuclei shown in blue boldface.

@) (b GOE
H—C—F H—C—F
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Fig. 5. Popular three qubit heteronuclear systems include (a) dibromofluoro-
methane and (b) diethyl-fluoromalonate, here drawn to emphasise the simi-
larity of the two systems. Note that the protons in the ethyl groups are not
significantly coupled to the main qubits and give signals well separated from
the 'H qubit multiplet.

popular approach is to combine 'H, '3C, and °F nuclei in '3C labelled
dibromofluoromethane [187,188,235-240], ethyl 2-fluoroacetoacetate
[241,242], or diethyl-fluoromalonate [243-275]. Although some
studies of diethyl-fluoromalonate explicitly refer to '3C labelling
[250,266] it appears that some other experiments were performed with
unlabelled samples, although it is only rarely that this is clearly
described [243].

Between the extremes of homonuclear and fully heteronuclear sys-
tems lie the mixed systems, with two spins of one nuclear type and the
third of another. This approach allows the unique spin to be directly
controlled while stroboscopic methods can be applied to the two spins of
the same species, and can allow a convenient distinction between
different roles for particular spins, for example for input and output. A
HHF system has been explored in 4-fluoro-7-nitro-benzofuran
[131,276], while HHP has been studied using E-(2-chloroethenyl)
phosphonic acid [277] and HHN using !N labelled acetamide
[278,279]. Among doubly labelled compounds the most popular
approach has been to use the HCC system, usually in trichlororethene
[36,112,99,280-290] but sometimes in tris(trimethylsilyl) silane-
acetylene [291-294] or in propyne [295].

4.4. Systems with four spins

With four spins the range of possibilities becomes very large, and
here I list only some notable examples. An early experiment used 1-
chloro-2-nitrobenzene as an HHHH system [18], but only used this to
control three qubits to demonstrate a Toffoli gate. Similar results were
shown wusing 2,3-difluoro-6-nitrophenol as an HHFF system
[133,276,296] and '3C labelled alanine as an HCCC system [215,297],
with selective decoupling of the methyl protons to simplify the spin
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Fig. 6. Four qubit homonuclear systems are dominated by '3C labelled cro-
tonic acid.

system. More sophisticated experiments were performed using glycine
as an HNCC spin system [298], which required not only '3C and >N
labelling but also selective replacement of one of the two C, protons by
deuterium.

Four qubit experiments have, however, become dominated by two
systems. The first is an extension of the FFF system iodotrifluoroethylene
to make a four spin system by using a '3C spin [299-320], apparently at
natural abundance. The second is the CCCC system (Fig. 6) provided by
fully 13C labelled crotonic acid (trans-but-2-enoic acid) [42] with 'H
decoupling [98,102,108,210,321-342]. This system has also been used
to implement three qubit experiments by simply choosing only three of
the spins [343], or to implement five to seven qubits by including the 'H
nuclei, as discussed below.

4.5. Larger spin systems

Experiments involving more than four spins are much rarer than
those involving the small spin systems described above, but a range of
larger spin systems has been investigated. An early example was a sys-
tem of five °F nuclei and two 3C nuclei in a partly '3C labelled per-
fluorobutadienyl iron complex [25] which was used to implement Shor’s
algorithm to factor 15. More modern experiments however have largely
concentrated on crotonic acid, by extending consideration to the 'H
nuclei. These can be divided into three groups: the hydroxyl group,
which undergoes rapid exchange and so can be ignored; the two hy-
drogens attached to C; and Cs either side of the double bond, which are
well suited to use as qubits; and the three hydrogens in the methyl
group, which are complicated. These three spins are magnetically
equivalent [344], and so must be considered together as a group
[345,346]. The three identical spin-% nuclei can most conveniently be
treated as an uncoupled combination of a spin-3 component and a spin-
1 component, and the spin-1 component can be considered as forming a
qubit [42,347]. The presence of the spin-3 component means that this
equivalence is not perfect, but it is good enough for some purposes. This
allows crotonic acid to be used as a seven qubit system [42,347-351],
although the nature of the methyl hydrogens is sometimes considered to
reduce this to a “six and a half” qubit system. The same molecule has also
been used to implement five qubit experiments by using just the methyl
hydrogens and the '3C nuclei by selecting the |00) component of the
other two 'H nuclei [113,352], as discussed in Section 7.7.

Beyond these heteronuclear systems, homonuclear systems have also
been explored. A five qubit system can be implemented using five of the
six 13C nuclei in fully labelled arginine, which form a linear chain that is
not significantly coupled to the final carbon in the guanidino group
[325]. A seven qubit system has been demonstrated using all seven 13C
nuclei in a fully labelled cyclobutanone derivative, specifically a racemic
mixture of (1S,4S,5S)-7,7-dichloro-6-oxo-2-thiabicyclo[3.2.0]heptane-
4-carboxylic acid and its enantiomer [229,353,354], which has also
been used as a six qubit system by ignoring one of the 3C nuclei [355].

This molecule also contains five 'H nuclei, which are all inequiva-
lent, and so can be used as a twelve qubit heteronuclear system
[356-358]. Twelve qubit experiments have also been demonstrated
using 'H, '3C and 'N nuclei in double labelled histidine [359]. Even
larger systems have been studied [38,126,127] by exploiting star to-
pology molecules [37,360,361], but as these systems do not permit full
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independent control of the qubits I do not consider them here.
5. Quantum control
5.1. Unitary and non-unitary evolution

The evolution of any purely quantum system under a Hamiltonian is
described by the time-dependent Schrodinger equation
o)

— =7 2
= %) (23)
where natural units have been chosen so that # = 1, and the Hamilto-

nian need not be fixed but can vary with time. This has the formal so-
lution

ly (1)) = U(D)[w(0)) 24

depending on the propagator

U(r) = ,7exp{ —i / t 7 (f) dt’} (25)
0

where the Dyson time-ordering operator, .77, defines a procedure for
correctly evaluating the operator exponential, as the Hamiltonian at any
particular time need not commute with Hamiltonians at other times
[362]. As the Hamiltonian is Hermitian the propagator must be unitary.
This means that pure states remain pure, or equivalently that properly
normalised ket vectors evolve to other properly normalised kets, and
that the inner product between different kets is preserved by the
evolution,

(b0l (1)) = (H(0)|U'Ulw(0)) = (¢(0)y(0)), (26)

since U'U is equal to the identity for any unitary operator. The evolution
of a mixed state p is given by

p(t) = Up(0)U", @7

and the equivalent result is that unitary evolution does not change the
eigenvalues of the density matrix.

Actually evaluating the propagator for a general time-varying
Hamiltonian is only possible in very special cases, but is straightfor-
ward when the Hamiltonian is piecewise constant, taking some fixed
value 7 for some time ;. In this case the sub-propagator for any indi-
vidual time period is

V; = exp(— i), (28)
where the matrix exponential can be calculated in many different ways
[363]. The combined propagator is given by the time ordered product

V=V,..VV, (29)
with time running from right to left. This structure will be key
throughout the following sections.

It might appear from the above that the evolution of a quantum
system is always unitary, and this is true if the system is isolated. In
reality, however, quantum systems are always coupled to some sort of
surrounding environment, and this can lead to effective non-unitary
evolution. The evolution of the combination of the system and its sur-
roundings remains unitary, but the evolution of the system alone need
not. Formally this occurs because couplings cause the state of the system
to become entangled with the state of the surroundings, and performing
a partial trace over the surroundings will affect the reduced density
matrix describing the state of the system alone [10].

The most obvious type of non-unitary evolution is relaxation, which
arises from uncontrolled couplings to the environment. Relaxation can
be broadly divided into decoherence, or dephasing (transverse relaxa-
tion), which acts to remove off-diagonal elements from the density
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matrix, and longitudinal relaxation, which changes the diagonal ele-
ments, driving them towards the thermal equilibrium state. In conven-
tional NMR decoherence, which occurs with a time constant T, is a bad
thing in that it limits resolution and sensitivity, although measurements
of decoherence rates can be used to extract information on molecular
motion [364], but longitudinal relaxation, which occurs with a time
constant T, is essential to produce the initial population differences that
lead to detectable signals. Within QIP, however, all forms of relaxation
are unambiguously a bad thing, as they introduce errors into the
quantum state, which must either be resisted (using decoherence free
subspaces [365-369]) or detected and corrected (quantum error
correction [109,110,370,371]). State preparation in technologies other
than NMR is usually performed using some explicit reset mechanism,
such as optical pumping, rather than relying on natural relaxation to a
thermal state.

While uncontrolled evolution is a bad thing, controlled non-unitary
evolution does have uses in QIP. The most important example is pro-
jective quantum measurement, which in effect causes a superposition to
collapse into an eigenstate. As well as being needed to extract a definite
result from an algorithm which ends in a superposition state this pro-
vides a simple route to reset qubits, such as ancilla qubits used in
quantum error correction, permitting them to be reused. Unfortunately,
projective measurements are not available in conventional NMR.
Instead, the most important non-unitary operations available are mag-
netic field gradients and phase cycling.

Field gradients [372] cause the Larmor frequency, and thus the
evolution, to vary over the macroscopic sample. As the detection process
combines signals from all over the sample the effect is to observe an
average density matrix. For this reason the process is normally referred
to within QIP as spatial averaging. In effect the evolution of a particular
molecule becomes entangled with its position, and the position is then
“traced out” by simultaneous detection of the whole sample [373],
which is equivalent to performing a partial trace over the position label.
The result is similar to imposing a decoherence process on the system,
but with two significant differences. Firstly, zero-quantum coherences
are invulnerable to gradients in homonuclear systems: this natural
example of a decoherence free subspace can sometimes be useful [374],
but is more frequently a problem [375]. Secondly the dephasing can be
reversed in spin echoes, allowing the dephasing to be applied selectively
to some spins and not others. The effectiveness of spin echoes is reduced
by diffusion [376], and this provides a convenient route to controllable
decoherence [112,142].

Phase cycling is a major topic in conventional NMR, but in principle
it simply refers to performing an experiment several times with different
phases for some pulses, and then combining the results together, with
the intention of retaining some desired signals while cancelling others
[377-379]. Within quantum information processing this is normally
called temporal averaging, as the evolution is averaged over experiments
performed at different points in time. Temporal averaging can be
generalised to include experiments that differ in other ways [380], but
as in conventional NMR the cleanest results are obtained when the ex-
periments are most similar to one another, and phase cycling remains a
common approach. Unlike the use of field gradients phase cycling can
discriminate between nuclear species, and can be applied to individual
spins by using selective pulses, thus permitting the suppression of zero-
quantum terms. The simplest approach, exhaustive temporal averaging,
can become extremely long, but it may be sufficient just to select a subset
of experiments [98,380].

I will consider non-unitary processes again in Section 8, which dis-
cusses pseudo-pure states, but until then will concentrate on unitary
transformations.

5.2. Quantum logic gates

One central task in implementing QIP is to implement quantum logic
gates. Fundamentally these are just unitary transformations whose ac-
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tion on quantum bits has a simple interpretation in terms of information
processing. A wide range of notations are used, but they all represent the
same basic operations. As these operations are unitary it suffices to write
down a unitary matrix which has the desired effect. The simplest
example is the X gate, which converts the basis state |0) to |1); the reason
for referring to this operation as X will soon become clear. This gate is
described by the unitary propagator

0 1
X= ( 1 0>, (30)
which is easily shown to have the desired effect, as
0 1 1 0
xo=(1 3)(o)=(7)=m 31

and so on.

The X gate has a simple action on the basis states and so a simple
interpretation in terms of classical information processing, implement-
ing the not operation. However, as X is a unitary propagator it can also
be applied to superposition states, since

X(co|0) +¢1|1)) = coX|0) + 1 X|1)

32
= aoll) +1[0) (32)
by linearity. If the initial and final states are viewed on the Bloch sphere,
as described in Section 3, then the action of X is to rotate the state
around the x-axis by 180°, explaining the name. In the same way the Z
gate,

1 0
(6 %)
acts to rotate the state around the z-axis by 180°. Unlike X this gate has

no classical interpretation, but is a purely quantum logic gate. Another
purely quantum gate is the Hadamard gate,

1 1 1

=i )
which interconverts basis states and superpositions.

The matrices describing all these gates are unitary, which is easily
shown by direct calculation, and so these gates correspond to possible
unitary propagators, and can in principle be implemented by evolution
under some Hermitian Hamiltonian. In most cases the required Hamil-
tonian will not be immediately available, and so it will be necessary to
achieve the desired unitary evolution by combining a number of steps. In
the language of NMR it is possible to construct an average Hamiltonian
corresponding to the desired evolution, although this language is rarely
used within QIP, where it is more normal to think about the propagators
rather than the Hamiltonian. One exception to this general rule is the use
of refocusing sequences, explored in Sections 10 and 11.

(33)

(34

5.3. The control problem

Although a wide range of different approaches have been explored
for controlling NMR implementations of QIP, at heart they all have the
same structure [381]. The system has a background Hamiltonian, .7,
sometimes called the drift Hamiltonian, which describes the free evo-
lution of the system and contains Zeeman and spin-spin coupling terms.
The NMR spectrometer can then be used to apply additional control
Hamiltonians, which are RF fields, usually at single frequencies near
resonance with one or more spins. The overall evolution of the quantum
system is controlled by varying the control Hamiltonians, by changing
the RF amplitude, phase, and in some cases frequency.

Unitary control is relatively straightforward in a fully heteronuclear
system. Each spin can be viewed on resonance in its own rotating frame,
so that the free evolution only involves the couplings, which are usually
quite small in comparison with easily achievable RF nutation rates. In
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this case it is a reasonable approximation to simply ignore the drift
Hamiltonian during briefly applied pulses of the control Hamiltonians.
With separate control of amplitude and phase at the resonance fre-
quency for each spin it is easy to apply any desired single-qubit gate,
while two-qubit gates can be implemented using free evolution under
the couplings, most simply by using spin echoes to construct controlled-
phase gates [94]. This provides a universal set of quantum logic gates
[92] and so any desired evolution can be approximated to arbitrary
accuracy, and by the Solovay—Kitaev theorem this can be done effi-
ciently [382]. Practical methods for the design of efficient refocusing
networks will be discussed in Section 10.

The situation is more complex with homonuclear spin systems.
Fundamentally this is because the spin-selective shaped pulses [383]
necessary to perform qubit-selective gates have a minimum length, set
by the smallest frequency gap between the resonance frequencies of
different spins, and so it is necessary to consider evolution under the full
Hamiltonian, combining drift and control terms. The first homonuclear
implementation of a quantum algorithm [21] involved two 'H spins,
with frequency selection achieved using Gaussian shaped pulses [384],
incorporating a phase ramp to move the resonance frequency between
the two spins [385,386]. Choosing the pulse length to be stroboscopic
with the frequency difference between the two spins means that the total
evolution experienced by the other spin under its Zeeman Hamiltonian
corresponds to an integer number of rotations and can be ignored [21].
An alternative approach is to use jump and return sequences
[82,96,387], which achieve selective excitation in the shortest possible
time [388].

This stroboscopic approach only works for two spins, however, and
beyond this it is becomes challenging to use conventional shaped pulses
as it becomes necessary to worry about the phase of every spin. The most
direct approach, sometimes called abstract reference frames [42], simply
creates a virtual transmitter for each spin, using conventional phase
ramped pulses, which are kept phase coherent with the resonant spin.
Unlike in heteronuclear systems, these pulses will weakly affect off-
resonant spins through transient Bloch-Siegert shifts, but it is possible
to calculate the sizes of these shifts and offset the abstract reference
frames appropriately. These calculations are conveniently combined
with a pulse sequence compiler [389] which keeps track of phases. A
similar approach can be used to track extraneous spin-spin couplings, to
avoid unnecessary refocusing operations [390].

A more direct approach is to replace conventional selective pulses,
which avoid exciting unselected spins but do not leave them truly un-
changed, with more sophisticated pulses which perform an identity
operation on the unselected spins. In this case there are no phase errors
to keep track of, but it is no longer possible to design pulses using simple
intuitive methods. Instead it is necessary to use methods such as optimal
control theory to find pulses with the correct behaviour [391-393]. While
such methods are intrinsically far more complex than conventional pulse
designs, the fact that it is only necessary to obtain the desired behaviour
at a small number of distinct frequencies, which are known at the start of
the process, provides a useful simplification.

5.4. Global phases

Global phases arise in quantum mechanics because the conventional
description of a quantum state in terms of a ket contains more infor-
mation than the state itself does. They are rarely a concern in conven-
tional NMR because the use of notations based on density matrices
causes them to disappear. This is obvious for a pure state density matrix,
since

pr= W) =e"ly)wle™ = lw)lyl =, (35)
where the two global phases are just scalars, and so can be moved to the
same side, where they obviously cancel. Mixed states are simply aver-
ages over pure states, and so the same argument applies, and this gen-
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eralises to NMR operators such as I,. Such operators are not really
density matrices (in particular they have trace equal to zero, while all
properly normalised density matrices have trace equal to one) and
within NMR QIP they are usually called deviation density matrices [19],
but their behaviour towards global phases is identical to that of true
density matrices.

Global phases are also an issue when considering propagators, and
here can cause more serious concerns. For any propagator U there is an
infinite family of equivalent propagators,

U =¢e"U, (36)
whose action on a ket differs only by a physically irrelevant global
phase, which cancels out for density matrices as usual. Thus U and U’ are
entirely equivalent, but they are not actually identical.

Different but equivalent propagators must correspond to different
but equivalent Hamiltonians, and global phases arise from elements in
the Hamiltonian which are proportional to the identity operator.
Equivalently, different global phases correspond to different positions
for the zero point of the energy scale, which have no physical signifi-
cance as only energy differences are physically meaningful. Such terms
do not arise in conventional NMR treatments, where all Hamiltonians
are combinations of traceless operators, but they are regularly seen in
other physical systems, where the energy zero is frequently placed at the
energetic ground state, rather than at the zero-field spin energy as done
in NMR.

Problems with global phases will not normally arise if a consistent
notation is used throughout, but problems can arise when combining,
for example, NMR notation with theoretical QIP notation. Most of the
fundamental logic gates used in QIP do not correspond to traceless
Hamiltonians, and within NMR QIP can only be implemented with a
global phase shift. For example the Not gate is implemented as a 1805
rotation, but this has the propagator

exp( —inl,) = <£)1 61)

which differs from the desired X gate (Eq. 30) by a global phase of —i.
When seeking to implement a NoT gate in NMR it is essential either to use
a fidelity measure that ignores global phase differences, or to ensure that
the target has the appropriate global phase.

This second approach can largely be achieved by specifying targets in
NMR notation, but even then a subtlety can arise: spin-1 particles exhibit
spinor behaviour [373], and thus pick up a global phase of —1 on being
rotated through a full circle. Thus the operators for a 180;, and a 540
rotation differ by a sign, even though they have identical physical ef-
fects, and the same is true for 180 and 180° , rotations. This phenom-
enon is important in, for example, the design of composite pulses, where
the global phase in the target unitary may have to be allowed for [394].

37)

6. Optimal control

The basic idea of optimal control [395,396] is to use numerical
searches to locate a set of time-varying controls which optimally im-
plements some desired unitary transformation U in the presence of a
fixed drift Hamiltonian. The overall Hamiltonian

H ()= o+ (1) (38)
is best considered in some suitable rotating frame where it can be taken
as piecewise continuous, permitting the corresponding unitary trans-
formation V to be calculated using Eqs. 28 and 29. From this a trans-
formation fidelity can be calculated as

_|u@v)

T (UtU)

(39
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Note that if V = U then UV is equal to the identity, and so the trace is
maximised; taking the square of the absolute value removes any global
phase differences, while the denominator acts to normalise the result
into the range 0<.7 <1, as desired for a fidelity measure. The task is then
to locate a parameterised set of values of 7 (t) which maximises .7.
The parameterisation can be as simple as the strengths of the control
Hamiltonians at each point in the piecewise continuous form, or can be
more complex and indirect. To better reflect experimental limitations it
may prove necessary to restrict the strengths of control fields, or at least
to penalise solutions which require unrealistically strong fields, and it
can also be useful to seek solutions whose fidelities are robust with
respect to minor errors in the drift and control Hamiltonians.

Within this general class of problems many different approaches
have been explored. These vary principally in the choice of optimization
algorithm, the choice of fidelity measure, and any restrictions that are
placed on the form of /7 (t), as briefly outlined below.

6.1. Optimization algorithms

Since the quality of a chosen set of controls is summarised by a real
number, the fidelity, optimisation can be performed using any general-
purpose algorithm to maximise the fidelity, or equivalently to minimize
the infidelity, defined by

S =1-7. (40)
A wide range of minimization algorithms are available, but these can be
divided into broad categories according to the use that the algorithm
makes of gradients, and any measures that the algorithm takes to guard
against becoming trapped in local minima.

Perhaps the simplest approach is the simplex algorithm [397], which
seeks a local minimum in an n-dimensional search space by exploring
n+1 distinct points. The function is evaluated at each of the points
forming the vertices of this simplex, and an attempt is made to improve
the current worst point by a series of operations which move it in the
general direction of the better points. Eventually the simplex will sur-
round a local minimum, and will then contract so that all the vertices
approximately coincide at the minimum. This approach requires only
that the function can be evaluated at any point, and in particular the
function does not need to be differentiable. It is also relatively robust to
situations where the function cannot in fact be precisely evaluated, but
only estimated to within some uncertainty. This can be relevant in the
case of closed-loop control, discussed in Section 9, where the fidelity is
determined experimentally rather than evaluated computationally, and
the uncertainty is governed by noise. A simple example familiar from
conventional NMR is provided by computer adjustment of shim coil
currents to maximise the size of a deuterium lock signal [398].

More rapid convergence can normally be achieved if the algorithm
has access to gradients of the function with respect to the control pa-
rameters. (The use of n+1 distinct points means that the simplex algo-
rithm has implicit access to gradient information through finite
differences [399], but the gradients are not explicitly calculated or
used.) The most obvious approach, steepest descent, simply moves in the
direction of the gradient until the value of the function stops decreasing.
This method is ancient [400,401] but converges less rapidly than a naive
consideration might suggest. To obtain more rapid convergence it is
necessary to use a method such as conjugate gradients [402,403] which
avoids the zig-zag paths imposed by steepest descent. Even better
convergence is obtained by using the Hessian, that is the matrix of
second derivatives of the function, but finding this may be rather tedious
if a large number of control variables are involved. An excellent
compromise is provided by the second order quasi-Newton Broyden—
Fletcher-Goldfarb-Shanno (BFGS) algorithm [404-407], which ap-
proximates the Hessian using values of the gradients from successive
steps, and so gives rapid convergence near the minimum without
excessive overhead in the earlier stages [408]. The BFGS algorithm is
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available in many standard mathematical packages: for example the
Matlab minimisation function fminunc has options to use both con-
ventional BFGS and the limited memory L-BFGS variant [409,410] when
gradients are provided.

All of these algorithms will converge on some minimum, but a
function may possess multiple minima, and the aim is to find the lowest
(or equal lowest) of these, which is a global minimum. In the most
general case it is very hard to be sure that this has been achieved, but
there are several approaches for tackling the problem. Most simply, if
the infidelity function is confined to lie between 0 and 1 then any
minimum with an infidelity equal to 0 must be a global minimum, and
pragmatically any point with a sufficient small infidelity is good enough.
If the search algorithm converges to a point which is not good enough,
then the search can be restarted from a different initial position, with the
hope of converging on a better local minimum.

A more sophisticated alternative is provided by simulated annealing
[411], which builds on the earlier Metropolis algorithm [412]. While
conventional minimization algorithms only ever move downhill a
simulated annealing algorithm may also move uphill, just as thermal
excitations can allow a physical system to cross an energy barrier to
reach a lower energy state. As the algorithm progresses the equivalent
temperature of the process, which determines the probability of
accepting an uphill move, is gradually reduced, so that the algorithm
turns smoothly into a conventional minimization process. The method is
particularly effective at locating a deep global minimum surrounded by
shallow local minima, but provides no protection against the presence of
multiple deep but suboptimal minima, as the algorithm is likely to
become trapped by the first deep minimum that it finds. A closely related
algorithm, threshold acceptance, can perform the same search more
rapidly [413], but does not overcome the fundamental problem of deep
but false minima.

Simulated annealing was swiftly applied to the problem of NMR
pulse design [414,415], most famously in the development of the BURP
(Band-selective, Uniform Response, Pure-phase) family of pulses [416].
The threshold acceptance algorithm has been used in combination with
more conventional minimization to design control pulses for NMR QIP
[417]. Note that simulated annealing should not be confused with
quantum annealing [418,419], which seeks to minimise a function using
explicitly quantum hardware [420], and has been demonstrated using
an NMR implementation [158].

A quite different approach is provided by genetic algorithms [421],
also known as evolutionary algorithms. A set of controls can be
considered as a genotype, with the corresponding unitary trans-
formation being the phenotype, and the fidelity providing a fitness
function, which should be maximized. The algorithm begins with a
random selection of genotypes, from which the fittest members are
selected. New members are then generated by a combination of muta-
tion and crossing existing members, and the process is repeated. The
process of selection means that the highest fidelity sequences will be
retained, while the mutation and crossing processes allow the control
space to be explored.

Although the genetic approach appears promising, in practice it is
only useful when the parametrisation of the problem means that new
population members retain some common features with their anteced-
ents. In other cases mutation and crossing effectively produce entirely
unrelated trial solutions, and the genetic algorithm becomes simply a
complicated way of optimising a function by sampling values at random.
After an early application in designing shaped pulses [422], interest
within conventional NMR largely moved to its use in automated analysis
[423,424], but more recently the technique has been applied to solid
state NMR [425,426], to in vivo NMR [427], and to NMR QIP
[231,238,428].

6.2. Fidelity measures

The fidelity measure introduced above, Eq. 39, is not the only
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possible choice. One apparently obvious alternative is to take the square
root of this definition, using the absolute value of the trace rather than
its square. This is a simple monotonic transformation, and so the choice
may seem arbitrary, but taking the square has practical advantages. In
particular, evaluating the differential of an absolute value is messy,
while its square is much better behaved, since [y|* = y"y leads to

bl _ .
o= (1
where Re indicates taking the real part. This form also shows clearly that
when the fidelity is close to unity then taking the square root halves the
calculated infidelity.

One important exception to this occurs when the global phase dif-
ference between U and V is known beforehand, a situation which can
occur in the design of simple composite pulses [394]. In this case the
global phase can be corrected before calculating the fidelity, and there is
no need to take an absolute value. This leads to the simplest possible
fidelity and gradient functions, which is particularly useful when ana-
lytic methods are used. For numerical optimisation, however, the
robustness of taking the square modulus makes it the simplest and most
straightforward approach.

A far more significant change is to replace this propagator fidelity
with a state fidelity, such as

Ty = WlUVIW)* = W UVI) (w|V Uly) (42)
which measures how accurately V changes |y) into the desired state
Uly). Such state-to-state fidelities (also called point-to-point fidelities)
are frequently used in conventional NMR, but are only rarely used in
QIP, as the initial state before applying a logic gate is not normally
known. The two forms can be related by averaging the state-to-state
fidelity over a sufficiently wide range of input states, and this
approach is particularly useful for single-qubit gates [429], where it
suffices to average over three states corresponding to the cardinal axes of
the Bloch sphere.

An apparent computational advantage of this approach is that the
state V|y) can be obtained by numerical integration of Eq. 23 without
the need to explicitly determine the propagator V [393], which is a key
feature of approaches such as Spinach [430,431]. However, finding se-
quences that perform the correct unitary transformation requires aver-
aging over a large number of input states, and the expense of doing so
wipes this gain out. For conventional NMR there is much to be said for
following the straight and narrow path: “do not open krons, do not
diagonalise, use cheap norm estimators, and do not exponentiate
matrices” [432], but for QIP it is vital to remember the caveat “unless
you absolutely have to” [432].

A second advantage of state-to-state fidelities is that they can be
generalised to non-unitary evolution. Eq. 42 can be rewritten as

T, = WlUpUly) (43)
where
p=Viw) V' (44

is the density matrix corresponding to the pure state V|y), but the same
fidelity equation can be used when p is a mixed state density matrix,
arising from |y) by some more general process. This form enables the
design of optimal state transfers [433] and quantum gates [434] in the
presence of significant relaxation processes.

It is tempting to generalise this formula even further, and to define a
fidelity between two density matrices p and ¢ as something like tr(po),
but as discussed in Section 3 this form is only correct if at least one of the
density matrices corresponds to a pure state. Instead it is necessary to
use the Uhlmann-Jozsa fidelity, as discussed in Section 3.2. In addition
to being somewhat complex to calculate, even using the efficient form
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[119], the interpretation of any mixed state fidelity can be unintuitive.
For now I will simply ignore the question, although I will return to it in
Section 8.

Despite the warning above, the naive fidelity expression tr(po) is very
frequently used in conventional NMR, and is commonly extended to
calculations involving deviation density matrices such as product op-
erators. Such expressions are not normally genuine fidelities, and in
particular are not normally restricted to values between 0 and 1, but
they can provide a useful and easily calculated function to maximise or
minimise. Fortunately, these naive expressions can be used when
comparing one density matrix with different unitary transformations of
another density matrix [435], and this is frequently sufficient. It is
necessary to be careful when extending this definition to operators
describing coherence orders rather than magnetizations [344], as these
are not Hermitian and so not equal to their adjoints, and it is necessary to
distinguish carefully between tr(ps) and tr(p’c).

The optimization function can also be used to design pulses subject to
specific constraints by adding a penalty function which discourages, for
example, large control amplitudes or rapid changes in amplitude [436].
Such mixed optimization functions are not strictly speaking fidelities,
but their behaviour can be very similar, particularly if penalties are only
applied above some threshold. However it is generally better to avoid
the use of penalty functions if their aim can be achieved in some other
way [437], such as the restricted forms discussed below. When such
mixed optimization functions are used it is important to be aware that
the “fidelity” might not be confined to the conventional range of 0 to 1,
and so the infidelity calculation in Eq. 40 is not always appropriate.

6.3. Robustness to errors

Until now I have assumed that the control Hamiltonian experienced
by a particular spin system is equal to the control Hamiltonian that was
nominally applied, but in practice this will not be the case [321,438].
Although the strengths of control fields can be calibrated by simple
measurements, the assumption that a control field has a fixed strength is
incorrect. The NMR sample is macroscopic and the applied RF field will
vary significantly over the sample. The exact pattern of B; in-
homogeneity will depend on the sample and the RF coil, but in a typical
NMR system the main distribution is approximately Gaussian, with a
width of around +5%, and a significant tail at much lower values [439].
This can be reduced by using a small sample [440], or by using NMR
methods to select regions of high homogeneity [42,350,441], but cannot
be entirely eliminated, and is a particularly serious problem with early
designs of cryogenic probes [442]. Errors can also arise if the B; field
strength is miscalibrated, or if it changes after calibration, for example
due to temperature changes in the RF amplifier.

Tackling B; strength errors is a major topic in conventional NMR,
notably through the use of composite pulses [443,444], and is also an
important topic in NMR QIP. Such systematic errors can be addressed
because they are reproducible, and so can be arranged to largely cancel
out. Fortunately it is easy to build a requirement for robustness into
optimal control by simply averaging the fidelity over a range of different
control field strengths [433], although more sophisticated processes
have also been considered [445,446]. It is not normally necessary to
choose this range particularly carefully or to sample the range finely,
and choosing field strengths such as 97%, 100% and 103% of the
nominal value seems to work well in practice. The variation of fidelity
with field strength is usually slow enough that a pulse that performs well
at these three values will perform adequately across the whole of the
main part of the distribution. Dealing with spins in the tail of the dis-
tribution, with very low B; strengths, is far more challenging, and rarely
worth the effort.

With a heteronuclear spin system it is important to remember that
the RF field inhomogeneity pattern may be different for different nuclei.
A typical NMR probe has two physical coils, an inner coil with a high
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filling factor [447] and a larger outer coil. Each coil may be tuned to
multiple resonance frequencies [448], most commonly placing high
frequencies on one coil and low frequencies on the other; ideally the
nucleus actually detected should be placed on the more sensitive inner
coil, with the outer coil only used to apply control fields, but it is
common, if not ideal, for QIP experiments to be performed on systems
optimised for other conventional purposes, and so for probes to be used
the wrong way round. The RF field inhomogeneity depends strongly on
the coil geometry, and only weakly on the RF frequency, and so will be
very similar for all nuclei addressed through the same coil. It is therefore
sufficient to consider at most two sets of field distributions, and so
average over nine combinations of different field strengths.

A further problem can arise when the RF field strength varies during a
control pulse, for example if the power of an RF amplifier rises or falls
after it has been activated [440], or as a consequence of the finite
response times of tuned circuits [449]. While some cases can be
modelled fairly accurately, the most general errors have to be addressed
in another way, such as monitoring the RF amplitude during a pulse
using a pickup coil [293], or by using closed-loop control.

In early work it was common to design control sequences to be robust
to other types of systematic error, such as variations in the chemical
shift. In practice this is usually unnecessary for QIP, and RF in-
homogeneity is normally the only important effect to consider. This is
very different from the situation in conventional NMR, where the use of
optimal control theory to design band-selective pulses is a very impor-
tant topic, and this is addressed briefly in Section 7.6. An interesting
modern exception to this general rule is the design of sequences which
are robust to the spin states of passive spins, a point explored in more
detail in Section 7.7.

6.4. General and restricted forms

Optimal control requires finding a set of control fields that achieve a
desired aim, and it is important to consider how these control fields are
parameterised. I am assuming that the fields will be piecewise contin-
uous, to enable a practical solution of Eq. 23, and the simplest approach
is just to digitise the control fields at equally spaced intervals in time, as
is normally done when specifying a shaped pulse. For a homonuclear
spin system all qubits are affected by the same control field, and so the
Hamiltonian is conveniently parameterised as

X=X o+dF, +dF, (45)

where 7 includes resonance offset terms and couplings, a; and ajy are
real amplitudes, and

F, = zkzlﬁ, Fy = ;15

are the total angular momentum operators across all spins. Alternatively
the real amplitudes can be packed together to form a single complex
amplitude, a = @* + i?, and this can be described using its magnitude
and phase rather than its components. In a heteronuclear spin system
there are separate control fields, and thus separate amplitudes, for each
homonuclear subset of spins.

To access the full flexibility offered by arbitrary control fields it
might seem best to sample the control fields as finely in time as possible,
but this is not the case. The physical apparatus used to generate the
control fields will always have some limiting time resolution, but even
above this limit it may prove difficult to actually implement very rapid
variations. The analogue parts of any NMR system will always act as
low-pass or band-pass filters, smoothing the applied waveform, but
more seriously the digital control circuitry can introduce significant
switching transients at every change in complex amplitude. This is
rarely a major problem with modern spectrometers built around direct
digital synthesis [450,451], but imperfections can be very serious for
older systems which use switchable attenuators, where much better

(46)
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experimental results are seen with a coarser time spacing [437]. Beyond
these experimental issues, designing a more finely sampled pulse will
clearly require more computer power [452]. A more careful analysis is
attempted below, but it is clearly desirable not to sample much more
finely than necessary. Fortunately, simple Fourier considerations indi-
cate that a very fine sampling is not normally required.

A common approach is to vary both the x and y components of the
control fields, or equivalently to vary both their amplitude and phase,
but it can be useful to consider more restricted forms. In particular it can
be very convenient to use a fixed amplitude for the control fields and
vary only the phase. This avoids any need to impose an amplitude
penalty, but also has computational advantages, as discussed in Section
7.4 below. A less common approach is to fix the phase and vary only the
amplitude, or to use a single control field along x, fixing @ = 0, which
corresponds to restricting the phase to 0 and z. This has the disadvan-
tage that any such pulse cannot distinguish between spins at positive and
negative values of the same absolute offset frequency.

Several more restrictive approaches have been explored in detail,
some of which have counterparts in conventional NMR, and all of which
are designed to describe a long shaped pulse with a relatively small
number of parameters. One approach is to split a sequence into fixed
amplitude pulses and variable length delays, which within QIP is known
as quantum bang-bang control [453]. This approach has been widely
explored for dynamical decoupling (Section 11), but also for more
general control [238,454]. At the other extreme some authors have
aimed to design smooth pulses by describing the amplitudes in terms of
low frequency Fourier components, as seen in conventional NMR in the
BURP family of pulses [416], and which was more recently applied in
NMR QIP [358]. In this case the low frequency description is often
converted to a high frequency sampled waveform before calculating the
evolution, which can cause complications in calculating gradients.

6.5. Composite pulses

Another approach of considerable historical importance is strongly
modulating composite pulses [197,321]. Like conventional composite
pulses, these construct a shaped pulse from a small number of pulses
placed back-to-back, but in addition to the phases the amplitudes,
lengths, and offset frequencies are also varied. By using a sequence of
frame transformations it is possible to directly calculate the overall
evolution in an efficient manner, and for systems with small numbers of
qubits excellent single-qubit gates can be designed with ease. The final
optimised sequence is then converted to a conventional finely sampled
shaped pulse, using phase ramping to implement any frequency shifts
[385,386].

Strongly modulating pulses have been widely applied in NMR QIP
experiments [197,203,205,217,218,321,359,438,455-457] including
solid state [63,64] and strongly coupled systems [75], quadrupolar
nuclei [458,459] and ENDOR [460]. For some time it seemed likely that
the approach would become the dominant method for designing pulses
for NMR QIP, but it has now been effectively superseded by the more
general GRAPE technique described in Section 7.

Conventional composite pulses, in which the individual pulses have a
fixed common frequency, usually have a fixed common amplitude, and
frequently have either a fixed common length or individual fixed lengths
which are small multiples of some underlying basic length, are rarely
useful for qubit selective addressing. Superficially they appear suitable
for use in heteronuclear QIP systems, but even in this case there can be
issues arising from evolution under spin-spin couplings when pulses are
applied simultaneously to two or more spins, and it may be better to use
simple pulses [140]. They have, however, found wide application in
dynamical decoupling, as described in Section 11, and have also been
used in two-qubit homonuclear spin systems, where their tolerance of
off-resonance errors permits uniform excitation of both spins [461]. This
uniform excitation can be combined with jump and return sequences to
provide frequency selection [388]. These applications have led to
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considerable interest in designing composite pulses for NMR QIP, some
of which may have wider applications in conventional NMR. These
novel pulses are all universal rotors, which perform well for any initial
state, sometimes called Class A composite pulses [444].

The design of robust noT gates turns out to be much simpler than the
more general case, particularly when these gates are made from se-
quences of 180° pulses [394]. Early results from conventional NMR
include the three-pulse sequence 180129 180249 180129, which corrects
B; strength errors, and the related sequence 18060 180120 18060, which
tackles off-resonance errors [462,463]. (When designed for use in con-
ventional NMR it is common not to try to design a Not gate but simply to
implement a 180° rotation around some axis in the xy-plane, but this can
be easily fixed by offsetting all the phases, and sequences listed here
correspond to the desired 180, rotations, up to a global phase of £1.) A
key result is a simple five-pulse sequence

180249 180210 180300 180219 180249 47)
which tackles both B; strength and off-resonance errors. Within NMR
QIP this is generally called the Knill pulse and is widely used in
dynamical decoupling [464,465], as discussed in Section 11.1. The
performance can be further improved with sequences of seven or nine
pulses [394].

For dealing with B; strength errors in quantum gates corresponding
to other rotation angles, the BB1 sequences designed by Wimperis [466]
have proved particularly useful. These provide good suppression of By
strength errors at no cost to the sensitivity to off-resonance effects, and
are available for all pulse flip angles. One minor change when applying
them to NMR QIP is that the correction sequence, comprising four 180°
pulses, is usually placed in the middle of the main error-prone pulse,
rather than before it as in Wimperis’s original design. For the design of
Not gates (180; pulses), the Wimperis sequence can be applied itera-
tively [467], permitting sequences with arbitrary suppression of B;
strength errors to be designed with relative ease. For other rotation
angles this iterative approach is not successful, but a mixture of analytic
and numerical searches have found some BB1 style sequences which
outperform the classic design [439,468]. Shorter composite pulses are
also available from the scrorurous family [469], but these are less
effective at suppressing errors, and with the exception of nor gates
require some unusual rotation angles for individual sub-pulses.

Tackling off-resonance errors is also difficult for pulse flip angles
other than 180°. The corese and short-corpse sequences [469] give
moderate error suppression, but again require unusual rotation angles.
More recently these pulses have been placed in a wider context [470],
but the original solutions remain among the most promising. Of more
interest are the ConCatenated Composite Pulses (CCCPs) [471-473],
which provide simultaneous compensation of off-resonance and pulse-
strength errors for arbitrary flip angles, and which have been demon-
strated in NMR experiments [474].

Finally there has been significant theoretical interest in exploring the
limits of error suppression with composite pulses, beyond the specific
iterative approach to suppression of B; errors in Not gates [467]. Note
that the interest within QIP is usually in obtaining very precise quantum
gates in the presence of moderate underlying errors, the opposite of the
situation in conventional NMR which usually seeks moderate perfor-
mance over very wide ranges of parameter values. A key result is that
there is no limit in principle to the accuracy that can be achieved as
existing pulse designs can always be improved using methods similar to
those used to derive the Solovay—Kitaev theorem [475,476]. The orig-
inal paper is a challenging read, but a more detailed explanation in more
conventional NMR notation is available [477], which also clarifies the
need for sufficiently accurate inverse pulses when using the Solo-
vay-Kitaev construction. This is not a problem for B; errors, as a 6_
pulse remains an accurate inverse for a 6, pulse, but care is needed when
seeking to correct off-resonance errors, as in this case the errors will add
up in the sequence 0,60_, instead of cancelling out [477]. There are also
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specific results available for the case of pulse strength errors [478],
where it is possible to draw analogies between composite pulses and
filter designs [479].

6.6. Choosing an approach

Shaped pulses developed for applications in conventional NMR have
frequently used restricted forms. This choice seems to have been driven
firstly by a desire for pulses which either vary smoothly or which change
sharply at only a small number of points, thus imposing fewer demands
on the implementation hardware, and secondly by a belief that the
number of controllable parameters should be kept small to reduce the
computation time required. Both of these concerns are now unwar-
ranted, due to the design of modern spectrometers with direct digital
synthesis, which can produce even complicated waveforms with
comparative ease, and the rapid progress in computer power, tradi-
tionally summarised in Moore’s laws [480]. With computing power
increasing by an order of magnitude every five years [481], problems
that were very challenging thirty years ago are now straightforward.

These concerns also led to a concentration on algorithms that avoid
gradients. Superficially it appears that fidelity gradients can only be
calculated using finite difference methods, and this requires n+1 func-
tion evaluations for a function with n input parameters. If these inputs
are simply digitised amplitudes, then there will be n sub-propagators to
calculate for each function evaluation, leading to an apparent O(n?) time
complexity for gradient-based methods, compared to O(n) for methods
that only use function values directly. Gradient-free methods also permit
solutions to the possibility of local minima, as described in Section 6.1
above. This approach has been explored within QIP as the chopped
random basis (CRAB) [482] and related algorithms [483]. However, a
key result about optimal control landscapes is that the great majority of
control problems are in fact free of such traps [484-487], suggesting
that such concerns are in fact unlikely to be important.

Avoiding gradients is also usually unnecessary as there are methods
to find gradients more efficiently by storing partial results, an example
of a time-memory tradeoff [488]. Within NMR this is usually imple-
mented through the gradient ascent pulse engineering (GRAPE) algo-
rithm [433], which has applications in both NMR QIP and more
conventional NMR studies, and which is explored in detail in Section 7.
Other implementations of QIP have largely concentrated on the earlier
Krotov family of algorithms [489-492]. The principal difference be-
tween these approaches is that the GRAPE family uses gradient calcu-
lations to update all the points in a pulse shape simultaneously, while
the Krotov family sweeps forwards and backwards across the shape.
Although these two families superficially appear quite different, it is
possible to describe them, and possible hybrids, within a unified
framework [493,494]. Gradient techniques can also be applied within
the CRAB family, giving rise to the gradient optimization of analytic
controls (GOAT) scheme [495].

7. GRAPE

Gradient ascent pulse engineering (GRAPE) [433] can refer to a wide
range of related algorithms for optimal control, usually but not always
within the context of NMR. Implementations can differ in the choice of
underlying fidelity function, the presence of penalty functions, and the
choice of optimization algorithm, but are all united by a common
approach to the calculation and use of fidelity gradients.

Here I concentrate on applications within NMR QIP, and so I largely
consider the standard unitary fidelity, Eq. 39. The Hamiltonian is nor-
mally assumed to be piecewise continuous (although more general
forms have also been considered [449]), where the jth Hamiltonian is
applied for a fixed time 7, and takes the form of a sum over the drift
Hamiltonian and all possible control Hamiltonians scaled by their
amplitudes,
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,W,- = WO+Za]]ka, (48)
k

as shown in Fig. 7. Here the sum over k can run over x and y (to allow
phase control as well as amplitude control) and also over multiple nu-
clear species in a heteronuclear system. As usual the overall propagator
is given by the time ordered product

V=V,..V,..V, (49)
with sub-propagators
V; = exp(—i#7). (50)

This restriction to fixed equal time intervals is not essential to what
follows, but is a common and convenient approach, reflecting the way
shaped pulses are encoded within NMR hardware.

The original authors considered a wide range of fidelity functions
[433], corresponding to different tasks and to the presence of different
assumptions about relaxation, but for optimising unitary trans-
formations they seek to maximise

@, = [(UIV)[* = (U|V)(V|U) (€10
where the inner product between two operators is defined as
(UIV) = (UTV). (52)

This trace form for an inner product may appear unfamiliar, but is in fact
precisely how the inner product between two kets is defined if the kets
are written explicitly as matrices: the product of a complex conjugated
row matrix (representing a bra) by a column matrix (representing a ket)
gives a one-by-one matrix, and taking the trace of this matrix converts
the single element to a scalar as desired. Note that ®4 differs from the
conventional unitary fidelity, Eq. 39, by a normalisation factor. For a
system of q qubits U'U is the identity matrix of size 29, and so

T =D, /4, (53)

but if one is seeking to maximise the fidelity the precise normalisation is

irrelevant as long as one is consistent.
The next stage is to rewrite the inner product in an equivalent form

— L H; ZH()+ZQ§F54
k

G.’j u .
‘ V; = exp(—iH,;7)
V=V,...V;.. 1
J
forward propagators
= p=Vvl, .. .viu

-
backward propagators

Fig. 7. The GRAPE trick allows the inner product (U|V) to be rewritten in terms
of forward and backward propagators as (P;|X;), which enables gradients to be
calculated efficiently by storing intermediate values.
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Uy =u(U,..viyvi...v)

t ik
w([vlviu] [vii])
_ " ijj)
= (P|X;)

Vv
(54)
t

where the second line uses the standard identity ABC = (C'BIA") and
the fact that the adjoint is self inverse. Here

X, = V...V, (55)
is the forward propagated operator up to the jth time period, and
P=V, .Viu (56)
is the backward propagated target. In this notation

@, = (P|X;)(X;|P;) (57)

for any value of j, with the conventional form, Eq. 51, corresponding to
the choice j = n.
This form is far more convenient for calculating derivatives,

0D, 0X;

W:—ZRe(@jb—dj_)(Xij >, (58)
J J

which follows from the product rule, the linearity of the trace function,

the fact that P; is independent of (xJ’-‘, and Eq. 41. The forward propagator

X; does depend on the jth set of control amplitudes, but only through the

final sub-propagator,

ox; oV,
a—a;:a—évj,,...vl. (59)
7 J

Up to this point everything is exact.

Calculating the derivative of the sub-propagator is more challenging,
but if the control amplitudes are sampled finely then 7 will be small
enough that a linear approximation can be used,

~ —itFV;, (60)

has)
daf
as discussed below. Putting this all together leads to the key result
(3<I>4 -

60:}‘ 61

— 2Re((Pi[izFiX;) (X;|P;))

which is accurate to first order in 7 [433]. The significance of this form is
that the forward and backward propagators can be calculated efficiently
if partial results are stored. Since X; = V;Xj_;, and so on, it is only
necessary to calculate each sub-propagator once, and then to multiply
everything out twice: forwards to obtain the X matrices and backwards
to obtain the P matrices. This permits gradients to be estimated is a time
O(n), that is linear in the number of control points rather than the
quadratic dependence observed for naive finite difference methods.

Similar formulae can be derived for a range of alternative fidelity
measures, and including the effects of non-unitary evolution. While
these methods have important applications in conventional NMR
[496-498], they are rarely relevant to NMR QIP and will be largely
ignored here. Writing an implementation of GRAPE is fairly straight-
forward using a high-level computing language which provides opti-
mization routines. Alternatively, implementations are available as
packages written in Matlab (Dynamo [493], Spinach [430,499]), Python
(QuTiP [500,501]), Julia [502], and C (SIMPSON [503]).
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7.1. Approximate derivatives

In the section above I simply asserted that Eq. 60 provides an
approximate formula for the derivative of a sub-propagator with respect
to one of the control amplitudes. Before turning to the correct formula
for the exact derivative it is useful to consider a simple justification for
this form, which also shows why it is only approximate and indicates the
conditions under which the approximation is a good one. Start by
writing

OV, _ . exp(=il + Fe) — exp(—i7 1)
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and note that the fundamental problem in evaluating this is that F; will
not normally commute with 7;, which makes evaluation of the first
matrix exponential complicated. However, as § is small and small evo-
lutions almost commute with everything, this can be approximated as

exp(—i[Z; + 6F¢]r) =~ exp(—i7t)exp(—i6F7)

~ exp(—i6Ft)exp(—iAZ 7). 63)
Choosing the second form, and using the fact that as § is small a series
expansion can be used for the first exponential term, giving

—1 2 —
im (1 laFkTJ; o%) 1) exp< - ii/jf)

(64)
~ —itF}V;

as stated previously. The flaw in this argument can be seen by instead
choosing the first approximate form in Eq. 63, which leads to

av; .
— ~ —IitV,F)
daf itk

(65)
and since V; and Fy will not normally commute these two forms will be
different, and neither of them will be correct. The solution to this is
simply to note that if 7 is small enough then V; will be a small evolution
that almost commutes with everything, and so the two forms are almost
the same and are both approximately correct, with Eq. 60 chosen for
convenience in subsequent calculations. As stated in [433] this result is
only valid to first order in 7. For this reason, the standard approximate
gradient, Eq. 61, becomes more accurate as the shape of the pulse is
sampled more finely. Fortunately the linear time scaling achieved by
GRAPE means that fine enough division is normally practical.

7.2. Exact derivatives

While it is possible to use these approximate derivatives, it would be
desirable to find a more precise formula [504], as this will give much
better convergence with more sophisticated optimization algorithms
such as BFGS [408,493,505]. The route to an exact formula has been
known for some time [506,507], and has been applied within conven-
tional NMR [508]. The exact derivative of the exponential of a sum of
two non-commuting operators A and xB with respect to x at x = 0 can be
evaluated in the eigenbasis of A as

; (@Bl it E = ¢
gl et fm> = S ebm (66)
< 'lox <€I|B‘§m>%7 otherwise,
1 Sm

where A|&) = &|&). This result is derived in Appendix A of [493]. This
approach requires /7 to be diagonalized at each point, but the resulting
eigenvectors and eigenvalues can be reused to calculate matrix expo-
nentials, replacing the more normal combination of the scaling and
squaring and Padé approximant methods [363].
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7.3. Approximate evaluation of propagators

The section above describes how to perform optimizations more
accurately, but there remains some value in methods for performing
approximate calculations as rapidly as possible. This is principally useful
to obtain good initial guesses for a control pulse which can then be
optimized by more precise methods. One approach which initially
appeared promising was the method of Gradient Ascent Without Matrix
Exponentiation (GRAWME) [509], which replaces all the matrix expo-
nentials in a calculation by approximate forms. This method has been
superseded by the realisation that phase-only control, discussed in the
next section, gives even greater speed gains while retaining full accu-
racy, but the idea remains of historical interest, and similar ideas have
been applied in other contexts [358].

GRAWME begins by writing the control fields in terms of a time-
varying amplitude and phase, rather than the x and y amplitudes, to get

H;=Ho +A,~(c0sq’)j F, + sing; Fy). (67)
This allows V; to be rewritten as

V; = e eyt (68)
where

Vi =exp(—i[Z +AiF]7) (69)

is the equivalent operator with all the amplitude along x. This operator is
the sum of two non-commuting observables, and so requires explicit
matrix exponentiation [363]. It can, however, be approximated using
the Trotter-Suzuki form [510-512]

Vf o @ 17072 gt o =i 072 (70)
which is accurate to third order in 7. Here the first and third terms are
fixed; the central term depends on A; but can be easily evaluated as the
eigenbasis is fixed, and so can be made diagonal with a known fixed
basis transformation which interconverts Fy and F,. Putting everything
together gives

Vi e i Wy e T Wy e (71)
with all explicit matrix exponentials now diagonal in the computational
basis. The two basis transformations are defined by

W, = ¢ 0 2@, H@ ¢ 7072,

W, (72)
where H9 is the g-qubit Hadamard gate, which converts between the x
and z basis. As these are independent of A; and ¢; they need only be
calculated once. For the situations typical in the design of NMR GRAPE
pulses the fractional error in the evaluation of fidelities is around 10,
which is negligible in many cases [509].

Avoiding explicit matrix exponentials (or more precisely only eval-
uating matrix exponentials in a diagonal basis, where the calculation is
easy) will clearly speed up the evaluation of propagators, but unfortu-
nately the overall gain is only by a constant factor. The most time-
consuming step is now matrix multiplication, and like matrix expo-
nentiation this is an O(N®) process, where N = 29 is the dimension of the
vector space. Further constant gains can be obtained by careful coding of
multiplications involving diagonal matrices [509], but it is not possible
to entirely avoid full matrix multiplications, and the overall speed gains
observed were around a factor of 10. Extensions to higher order ap-
proximations have also been explored [513].

7.4. Phase-only control

Phase-only control [514] has several significant advantages over
general control for the design of GRAPE pulses. The derivations above
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assume that the amplitudes of the x and y components of the control
fields are varied independently, or equivalently that the amplitude and
phase of the RF field are both control variables. In phase-only control the
amplitude is held at some fixed value A and only ¢; is allowed to vary.
This means that V in Eq. 68 is constant, and only has to be calculated

once, so there is no reason to use approximations.

As before the phase shift operators are diagonal, and so easy to
calculate. The exact derivative is also easy to calculate directly as
o

(73)

o~ —iF.V;+iViF, =i[V}, F].
If desired this approach can be extended to calculate the exact Hessian
directly [341], rather than approximating it by BFGS methods. For
maximum efficiency it is important to use the diagonal structure of the
phase shift operators to perform the relevant multiplications rapidly,
rather than naively using a full matrix form [509].

Phase-only control has the further significant advantage of removing
any need to apply penalty functions to discourage excessive RF ampli-
tudes, as the amplitude is simply fixed at some desired value. This will
also remove any transient errors arising from amplitude changes, except
at the start and end of the pulse. If a smoothly varying amplitude is
desired instead, then it is easy to modify the calculation to use a pre-
determined value for A; at each point. Experience suggests that phase-
only control is in practice almost as flexible as full control as long as
the time step 7 is chosen small enough, and the efficiency of the calcu-
lations more than makes up for any increase in the number of control
parameters. Note that phase only control takes shaped pulse design back
to its origin in composite pulses, and phase-only shaped pulses can be
interpreted as very long composite pulses [515]. An important example
from conventional NMR is the use of binomial solvent-suppression se-
quences [516], although these only use phases of 0 and 180°.

7.5. Subsystem control

The methods above can provide significant speed-ups, making
GRAPE pulses an entirely practical method for implementing quantum
logic gates in systems with three or four spins, but the fundamental
scaling of the computational time required with the size of the spin
system remains a problem. As noted above, the time required for
elementary matrix multiplications scales as O(N®), where N = 29 is the
dimension of the Hilbert space for a system of q qubits. As a consequence
the time required to design a GRAPE pulse increases by a factor of at
least 8 for every additional spin in the system, and in practice the growth
is often worse as more selective control usually requires a longer control
sequence.

A partial solutions to this is provided by subsystem control [389].
Suppose that one wishes to design a single-qubit gate in the four-qubit
system provided by the '3C nuclei in labelled crotonic acid (Fig. 6).
These four spins form a rough linear chain, with large couplings (over
40Hz) between nearest neighbours and smaller long range couplings
(under 10Hz). This system can be fairly well modelled as a pair of three-
spin systems, one made up from the first three spins and the other from
the last three, with the omitted spin and all couplings to it simply
dropped from the two subsystem Hamiltonians. A control sequence
which performs a gate on the four-spin system should also perform an
equivalent action on the two three-spin subsystems fairly well, and vice
versa. The fidelity of the operation in a four-qubit system can be
approximated as the average fidelity over the two three-qubit sub-
systems, and it is considerably faster to perform calculations with two
three-qubit systems than with a single four-qubit system. The equiva-
lence of the fidelities will not be perfect, but it is easy to check the fi-
delity of the subsystem solution for the full Hamiltonian, and if
necessary to complete the optimization over the full Hamiltonian
starting from the subsystem solution as a good initial guess.

The subsystem approach can be taken further, describing crotonic
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acid as a combination of three different two-qubit subsystems, retaining
only the nearest neighbour pairs with large couplings. For a controlled
gate it is clearly essential to include at least those couplings directly
involved in the control process, but if the aim is to design a single-qubit
gate then the most extreme simplification, modelling the system as four
independent single-qubit subsystems, can be a useful start.

While subsystem control has proved useful even in small systems, its
real power comes into play in much larger spin systems. For example,
the 12 qubit system implemented with seven '*C and five 'H spins [356]
is too large to simulate directly, and was instead simulated using either
two non-overlapping subsystems of six spins each [357], which does not
allow full control, or five overlapping subsystems with between two and
four spins in each [358], which enables every pair of spins to be accessed
either directly or indirectly.

Similar approaches have been used to simulate the quantum circuits
used in NISQ (noisy intermediate-scale quantum) devices [517,518].
The presence of decoherence in such systems means that only an
approximate simulation is required, permitting the effective simulation
of circuits previously claimed to lie beyond the limits of simulation
[519]. Such approaches cannot, however, be used to simulate error-free
quantum systems, raising concerns as to whether subsystem control can
be used effectively in true quantum computers.

7.6. Single-spin control

A special case occurs when optimal control is performed on an
ensemble of single-qubit systems, either as an extreme example of sub-
system control or for applications in conventional NMR such as the
design of broadband pulses or pulses that selectively excite particular
frequency bands [442,520-529]. Such pulses can, of course, be designed
using any of the methods described above, but for single spin control
significant speed-ups are possible by taking advantage of the small size
of the vector space. In particular the sub-propagator V; and its de-
rivatives can be easily evaluated analytically, rather than using the
numerical methods which are required for larger spin systems.

For single-spin control state-to-state fidelity measures are particu-
larly interesting, as the relevant state space is small. In conventional
NMR it is common to seek pulses that perform correctly for a spin
initially along the z axis of the Bloch sphere, such as inversion or exci-
tation pulses. This can be achieved within QIP by using the fidelity for
the initial state |0), and the approach can obviously be generalised to
optimise the performance for any particular starting state.

Another common problem in conventional NMR is refocusing pulses,
which perform well for spins in the xy plane. These could be found by
optimising over two orthogonal states in the xy plane, such as | + ) =
(]0) + [1))/+/2, which lies along the x-axis, and |R) = (|0) + i[1))/V/2,
which lies along y. However, any single spin operation which performs
correctly along two orthogonal axes will also perform correctly along
the third, and there is no substantive difference between optimising the
state-to-state fidelity averaged over any two orthogonal states and
optimizing the unitary fidelity.

This is most easily seen by considering the form of U'V, which de-
scribes any erroneous transformation that V performs in addition to the
desired transformation U. For a single spin this corresponds to some
rotation around some axis on the Bloch sphere, and any such rotation
can only leave two particular states unaffected, these being the states
lying along the rotation axis for U'V. The sole exception to this general
rule is the identity operation, which leaves the entire Bloch sphere un-
affected. Thus if V performs U precisely for any two states which are not
on opposite sides of the Bloch sphere then U'V must be the identity
operation, and so V must be equal to U.

Thus the only high-fidelity single spin controls worth considering are
unitary controls and controls for a single initial state: refocusing pulses
are simply equivalent to unitary rotations. Obviously any unitary control
can be used as a good state-to-state transfer, but a good state-to-state
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pulse can be significantly shorter or more robust. More interestingly, the
process can be partially reversed: there is a simple procedure to convert
some state-to-state pulses into unitary pulses with twice the rotation
angle and taking twice as long [530].

For single-spin control it can also be useful to code parts of the al-
gorithm directly by hand [531] rather than using standard libraries,
particularly when using interpreted high-level languages such as Mat-
lab. Such languages have highly optimized routines for operations such
as matrix exponentiation, which are particularly effective with large
matrices, but when using two-by-two matrices to describe single spins
the overhead imposed by calling routines and using standard data
structures can far outweigh the relatively small amount of time spent
actually calculating results. With a two-by-two matrix it is perfectly
possible to simply store the four elements as individual values, and to
multiply matrices by hand, explicitly coding the result for each element.
While such code can be difficult to maintain, the resulting speed gains
can be very significant. The gains are smaller for compiled languages,
but still worthwhile.

For unitary propagators corresponding to traceless Hamiltonians an
even more compact approach is possible: all such propagators have the
form

a
o= (2

and so it is only necessary to evaluate two elements and the whole
matrix is known. Similarly, the trace of such a matrix is twice the real
part of either diagonal element, and so matrix traces can be evaluated
efficiently [531]. These observations are closely related to the use of
quaternions to describe single spin rotations [469,532].

{f’) jaf + 18> = 1, 74)

7.7. Decoupling passive spins

As discussed in Section 4, it is quite common to implement a QIP
protocol using a spin system containing more spin-% nuclei than the
number of qubits required. In particular the four '*C nuclei in labelled
crotonic acid provide an extremely popular four qubit system, but these
four spins are embedded in a larger system containing two distin-
guishable 'H nuclei, providing possible qubits, and three 'H nuclei in a
methyl group which could be used as a further qubit. The system has
been used to implement seven qubit experiments [42], but the most
common approach is to reduce the spin system to four qubits by
decoupling the 'H nuclei [102], using conventional broadband decou-
pling sequences [322] such as WALTZ-16 [533].

While this idea seems obvious, it works less well than one might
hope, and many experiments which use labelled crotonic acid as a four
qubit system suffer from very significant signal losses, which are rarely
explicitly acknowledged and even more rarely explained. The explana-
tion is that while broadband 'H decoupling is very effective at removing
the heteronuclear couplings during free evolution, it is far less effective
in the presence of simultaneous !'3C irradiation, as happens during
GRAPE pulses, due to uncontrolled Hartmann-Hahn transfers [534]. It is
straightforward to perform a brute force simulation of the evolution
under the full nine spin Hamiltonian in the presence of a decoupling
sequence with realistic RF power, and when this is done the apparently
mysterious signal losses are replicated [98].

One possible solution to this is to remove the heteronuclear cou-
plings by spin echoes rather than continuous decoupling [321], but this
only works where controlled gates are constructed from sequences of
short pulses and longer delays, rather than being implemented directly
as long GRAPE sequences. It would be desirable to find some way in
which the couplings to these passive spins, which play no role in the
controlled spin system of active spins, but are simply coupled to it, could
be ignored without the need to explicitly decouple them.

This could be achieved by preparing the passive spins in a pure state,
or equivalently as part of a pseudo-pure state, in effect selecting a subset
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of the components in the multiplet. If all the 'H spins are in state |0) then
the effect of the heteronuclear couplings is to cause a shift, rather than a
splitting, and they can simply be absorbed into the chemical shift, while
the homonuclear '3C couplings remain as normal. This method has been
used to implement a five qubit system in crotonic acid [352] by using the
four 3C nuclei and the spin-} component of the methyl group, while
setting the remaining 'H nuclei to state |0). With this approach it is
essential that the passive spins remain in |0), much as in TROSY ex-
periments [535], and so it is vital to avoid accidental excitation by RF
fields.

An even simpler approach to this problem is to leave the passive
spins in a highly mixed state, and then design pulses which are insen-
sitive to the heteronuclear couplings. As the passive 'H spins remain in a
fixed state during a 13C pulse sequence, their effect is simply to apply a
frequency offset which depends on their state and so is different for
different molecules in the ensemble. The system of nine spins can be
treated as 32 different subsystems, corresponding to the 32 possible
states of the 'H nuclei, with a subtly different four spin Hamiltonian for
each subsystem. The fidelity of a pulse sequence can then be averaged
over these subsystems, and the resulting GRAPE pulse will correctly
address the active spins whatever states the passive spins happen to be in
[98]. As the three methyl protons are indistinguishable this can be
achieved more efficiently by using a weighted average over the 16
distinguishable 'H spin states. Broadband decoupling should be applied
to 'H during acquisition, to simplify the observed spectra, but must not
be applied during the logic gates, to ensure that the passive spins remain
passive.

8. Pseudo-pure states

Quantum information protocols use unitary transformations to ach-
ieve tasks which are impossible for purely classical devices, but to obtain
the correct results it is essential that the system starts in a well-defined
initial state, usually taken as the state |00...0), with all qubits in state |0).
As this initial state must be prepared, whatever the state of the system
before the initialisation step, the initialisation process is obviously non-
unitary, and in particular must be a process, such as cooling, which is
capable of taking the system from a mixed state to a pure state.

Unfortunately the non-unitary processes available within conven-
tional NMR are not capable of achieving this. Evolution under the drift
Hamiltonian or control Hamiltonians is unitary, while decoherence (T»
relaxation) takes the system to a more mixed state. The same is true of
processes such as gradient dephasing and phase cycling, which can be
thought of as controllable decoherence. The sole exception is T; relax-
ation to the thermal state, but while this can increase the purity of the
spin state it remains very highly mixed.

The standard solution within NMR QIP is to prepare a pseudo-pure
state, also called an effective pure state, as shown in Fig. 8 for a two qubit
system. The underlying idea is to equalise the populations of all the
excited states, leaving the ground state, which has the highest popula-
tion at thermal equilibrium, untouched. The resulting mixed state can be
reinterpreted as a mixture of the desired pure state and the maximally
mixed state. Since the maximally mixed state does not evolve under
unitary transformations, and gives no detectable NMR signal, this
pseudo-pure state behaves just like a genuine pure state except that the
signal is scaled down, reflecting the effective purity.

It is important to remember that a mixed state has no unique
decomposition, and the belief that a pseudo-pure state really is a mixture
of the pure state and the maximally mixed state is an example of the
preferred ensemble fallacy or partition ensemble fallacy [536]. For this
reason it is generally not possible to use NMR methods to perform tests
of quantum mechanics, as the results can usually be reinterpreted using
a different decomposition [537]. However it remains true that apart
from a scaling factor NMR experiments on pseudo-pure states give
precisely the same results as experiments on pure states, as
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Fig. 8. Preparing a pseudo-pure |00) state in a homonuclear two qubit system. A thermal state (a) has higher populations in the lower levels, shown exaggerated
here. A mixing process is applied to equalise populations in the upper levels, leaving the lowest level untouched (b). The result can be treated as a mixture of the
desired pure state (c) and the maximally mixed state (d) with equal populations in every level.

demonstrated by pure state NMR implementations of Deutsch’s algo-
rithm [135] and Grover’s algorithm [136], which are indistinguishable
from their pseudo-pure counterparts. Furthermore, attempts to describe
NMR QIP experiments in purely classical terms [538] appear to be
impossible.

8.1. Single spins

The case of a single isolated spin—% nucleus is special, as no prepa-
ration sequence is necessary. The thermal state can be written in NMR
notation as

1
ﬂ:EE‘Fp[zv (75)
with the polarization p ~ ha/2kgT ~ 107°. Here I, is a deviation density

matrix, with trace equal to zero, rather than a proper density matrix,
with trace equal to one. This can be rewritten as

p = (1-p)1/2+p|0)0] (76)
where 1/2 = 1E is the maximally mixed state for a single spin and |0)(0|
is a proper density matrix corresponding to the pure state |0), and so this
is already a pseudo-pure state, as discussed in Section 3.

This is why the Bloch sphere picture can be directly transferred to
describe single spin NMR, ultimately leading to the success of the vector
model [539,540]. The conventional NMR approach is built around
traceless observables, as done in Eq. 75, dropping the undetectable 1E
term. The polarization term p could be retained, but as this simply scales
the size of the NMR signal, and the absolute signal size has no funda-
mental meaning, it is convenient to rescale everything such thatp = 1.
This is not true for larger spin systems, where pseudo-pure states are
quite different from thermal states, and intuitions from conventional
NMR are far less applicable to QIP systems.

8.2. Two spins

For two spins the thermal state can be written in NMR notation as
I, + S,, but this is no longer a pseudo-pure state. The desired state is now

p = (1-p)1/4+p|00)(00], 77)
with
100)(00] = % GE FLAS 4 21152) , 78)

and other initial pseudo-pure states can be written in a similar way as

1/1
jonyo1] =7 <§E+I, -, - 211s,>,

10)(10] = (%EflerSz 721;Sz>, 79

1
1111 = (EE—IZ —SZ+2IZSZ>.
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To generate a pseudo-pure state it is necessary to make an appropriate
mixture of the three population states, including the two-spin order
population term. Note that it is obviously possible to include the 1E
component in with the maximally mixed part, and so it is not necessary
to specifically generate this.

Reversing this argument, single spin polarization terms such as I, do
not correspond to pure states, but must represent mixed states. This is
entirely unsurprising, as terms like I, indicate that spin S is in a
completely mixed state. It is, however, easy to prepare states corre-
sponding to a single pure qubit, with the remaining qubits in maximally
mixed states, which are used in the DQC1 model of computation [541].

8.3. Preparation methods

Just like for pure states, the preparation process for pseudo-pure
states must be non-unitary, except for single spin systems where no
preparation is required. The easiest way to see this is to note that the
eigenvalues of the density matrices are different for pseudo-pure and
thermal states, and so these cannot be related by a unitary trans-
formation, which always leaves the eigenvalues unchanged. As both
states are diagonal in the computational basis, these eigenvalues can
simply be read off directly as the state populations. In a pseudo-pure
state for a two-spin system, three states will have the same popula-
tion, while the state corresponding to the desired pure state will have a
higher population. By contrast the populations in the thermal state will
be more diverse, with three distinct values in a homonuclear two-spin
system and four distinct values in the heteronuclear case.

Methods for preparing pseudo-pure states can be divided into three
broad categories. The conceptually simplest approach is logical labelling,
which simply uses a subset of levels within a larger spin system which
happen to have the right pattern of populations [19,20]. For example, a
two qubit computer can be encoded using three physical spin-1 nuclei by
assigning physical state |aaa) = |000) to logical |00) and physical states
|Bpa), |pap) and |app) to logical |01),]|10) and [11) in some order. It is
obviously necessary to use a larger number of physical spins than logical
qubits, but the overhead is not too large [19].

The simplicity of the preparation sequence comes at a cost in the
complexity of implementing quantum gates, as even single-qubit gates
which act correctly on the logical qubits will be very complex when
encoded to apply to the physical spins. A better approach is to manip-
ulate the initial populations, so that the desired population pattern is
shifted to the four states |000),]|001),|010) and |011), giving a much
simpler relationship between logical and physical states [19,20]. The
spin system is now in a pseudo-pure state, conditional on the first spin
being in state |0), and logic gates can be implemented directly as long as
they do not interchange the |0) and |1) states of this labelling spin [20].
This approach has been experimentally demonstrated to encode two
logical qubits in a three-spin system [100,131]. Because it relies on
naturally occurring patterns of identical populations, the approach is
only applicable to homonuclear spin systems.

A more popular approach is temporal averaging by permutation [380],
which requires no additional qubits. In essence temporal averaging is
similar to phase cycling, in that results from a number of similar




J.A. Jones

experiments are averaged together, but here the experiments differ in
the distribution of initial state populations. Since quantum logic gates
and NMR readout are both linear processes, this is equivalent to per-
forming a single experiment on an averaged input state. For example, on
a two qubit system the experiment is run first on the thermal state and is
then run preceded by each of the two cyclic permutations of the pop-
ulations of the three excited state populations, leaving the ground state
untouched in each case. This method works equally well with homo-
nuclear and heteronuclear spin systems, as it makes no assumption
about the pattern of populations beyond the lowest level having the
highest initial population.

The most popular methods for preparing pseudo-pure states, how-
ever, are based on spatial averaging [16,17], which is built around the use
of magnetic field crusher gradients to dephase quantum states. The
process in a two-spin homonuclear system can be easily understood
using product operators [44]. It normally begins by adjusting the rela-
tive populations of the two spins by partly exciting one of them and then
applying a crusher gradient to remove off-diagonal terms.

Sy 1 3
L8 1+ 55— %s
| (80)
crush
- .+ ESZ

This is followed by a series of pulses, coupling periods, and a final crush
gradient to convert I, to the right mixture of inphase and antiphase
terms.
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where couple indicates a delay of duration 1/2J for evolution under the
pure spin-spin coupling Hamiltonian #J 2L,S,. Note that the %SZ term is
unaffected by the pulses and coupling terms, and comes through this
stage unscathed. The process thus generates the correct final combina-
tion of terms for a pseudo-pure state. The coupling period can be
implemented using spin echoes to refocus the Zeeman interactions, or
alternatively such evolution can simply be tracked and the phases of
subsequent pulses adjusted. As the gradient pulses crush all off-diagonal
terms, any rotations of the reference frame at the end of the process can
simply be ignored, which significantly simplifies the implementation.

Whenever using sequential gradient crush sequences, it is necessary
to guard against accidental gradient echoes, where two crush sequences
cancel each other, causing crushed terms to be revived. In homonuclear
systems it is also important to avoid generating zero-quantum co-
herences, as these are not crushed by gradients. In heteronuclear sys-
tems zero-quantum coherence is not a problem and the simpler sequence
[373]

452y + S)coupte3*d—y + S_y)
- - -

Crusi 3
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can be used. This sequence requires initially equal polarizations on the I
and S spins, which can be achieved with a pulse applied to the higher
polarization spin followed by a crush gradient, or with a more complex
sequence [373] to average the two polarizations.

L+S.
(82)
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8.4. Practical methods

The methods of temporal averaging and spatial averaging can be
extended from two spins to larger spin systems. Within temporal aver-
aging, the naive exhaustive averaging approach requires performing
21 —1 separate experiments on a system of g qubits, and so is only
practical for small systems. More efficient methods have been explored,
combining non-cyclic permutations and unequal weights in the aver-
aging process, permitting a pseudo-pure state to be prepared in a system
of four homonuclear spins using a weighted sum of only five permuta-
tions rather than a naive average over 15 cyclic permutations [542].
Alternatively, random permutations can be used to prepare approximate
pseudo-pure states in very large systems [380].

In spatial averaging, the basic aim is to use unitary transformations
to convert a thermal state to a state with an appropriate pattern of
populations, and then apply crusher gradients to remove off-diagonal
terms. This approach works well in fully heteronuclear systems, but
difficulties arise in homonuclear systems, where zero-quantum coher-
ence terms are unaffected by the crusher gradients. One solution to this
is to use methods adapted from temporal averaging to perform qubit-
selective crusher pulses, but as the number of experiments required
doubles with every selective crush pulse applied [543] this swiftly be-
comes impractical unless exhaustive averaging is replaced by a ran-
domized process [98].

Because of this it is not possible in homonuclear systems to simply
apply a single unitary transformation (to assemble the correct popula-
tion pattern) followed by a single crush pulse (to remove off-diagonal
terms). Instead, it is necessary to alternate unitary and non-unitary
transformations in a more complex pattern. The original method
[16,17] used the hand-designed sequence described above to generate
the correct product operators with two crusher pulses [44]. A more
systematic approach uses controlled-transfer gates [543] to assemble the
desired population pattern without ever generating zero-quantum co-
herences. This approach also has the advantage of extracting the largest
possible amount of pseudo-pure state from a given initial state, and the
method works equally well with heteronuclear spin systems or non-
thermal initial states. However, the complexity of the sequences
required means that they are rarely applied to systems with more than
two spins.

Considerable simplifications to the networks required can be ach-
ieved if the single spin populations are first adjusted into a useful
pattern, sacrificing optimal theoretical efficiency for practical
simplicity. This can be achieved by applying selective excitations to a
single spin and then applying a crush pulse to remove off-diagonal
terms, as shown for a two-spin system in Section 8.3. A particularly
common approach with crotonic acid, a homonuclear four-spin system
well approximated by a linear chain, is to adjust the populations along
the chain to be in the ratios 8 : 4 : 2 : 1, halving with every step down
the chain, after which a simple sequence of just five controlled gates and
three crush pulses can be used to generate a pseudo-pure state [330]. A
network for achieving this is shown in Fig. 9; this network is very slightly
simpler than the original, and uses the correct sign for the evolution
under couplings. The size of the pseudo-pure state extracted can be
enhanced by beginning the experiment with a non-thermal state in
which populations are enhanced by nuclear Overhauser effects [98].

Many other methods for generating pseudo-pure states have been
explored, in particular combining temporal averaging and spatial
averaging methods to get the advantages of both [213,380,544,545],
and using highly entangled states [42] or singlet states [546]. It is in
general much simpler to produce states which are almost pseudo-pure
than fully pseudo-pure states, and several techniques for doing this
have been described [69,297,547].

8.5. Fidelities

Given the emphasis on optimal control through computer search in
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Fig. 9. A pulse sequence to generate a pseudo-pure state in a linear chain of
four homonuclear spins such as crotonic acid. The spins are labelled 1 to 4
along the chain. The initial pulses applied to spins 2, 3 and 4, with 0; =
arccos(1/2) = 60°,03 = arccos(1/4) ~ 76°,0,4 = arccos(1/8) ~ 83° respectively,
followed by a crusher gradient (G), act to adjust the populations. Subsequent
pulses are all 90° (broad boxes) or 45° (narrow boxes), with phases of x for
pulses before a coupling period, shown in red, and —y for pulses after a
coupling period, shown in blue. Coupling evolution for a time 1/2J under a
single coupling, isolated using a spin echo, is shown as two circles connected by
a line. The absolute phases of all pulses are unimportant, but the relative phases
of red and blue pulses must be set correctly.

earlier sections, it might seem odd that the preparation of pseudo-pure
states remains dominated by hand-designed approaches. One reason
for this is that the conventional fidelity formulae are not easily appli-
cable in this case, as they tend to assume that either one of the states
involved is pure, or that the quantum evolution is unitary, or both. Since
a pseudo-pure state is a highly mixed state, and must be prepared by a
non-unitary process, great care must be taken.

Suppose it is desired to prepare a pseudo-pure state corresponding to
the pure state |00) in a two-spin system. It might seem that

(00]p[00) (83)
would provide a suitable fidelity expression for a general state p.
However, this expression simply identifies the size of the component of p
which is parallel to |00), and is entirely insensitive to any other property.
Thus, for example, the two states
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would give precisely the same result, even though p, clearly is a pseudo-
pure state, and p, clearly is not.

Similar issues arise if the naive mixed state fidelity, tr(po), is used to
compare a general state p with a target pseudo-pure state

6 = (1—p)1/4+p|00)(00]. (86)
As the trace operation is linear this is a weighted sum of contributions
from the pure component, which leads to the problems discussed above,
and from the maximally mixed component, which reduces to tr(p)/4,
which is simply equal to 1/4 for any properly normalised density matrix.
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For these reasons conventional fidelity functions are rarely useful
when designing networks to prepare pseudo-pure states. It is possible to
fall back to the Uhlmann-Jozsa fidelity, or to other measures of in-
fidelity, such as ||p —o]|| for some suitable matrix norm, but while these
are suitable for testing whether two states are identical they might not
be particularly useful for comparing the quality of two imperfect
matches to the desired state. For example, a pseudo-pure state with sub-
optimal effective purity is likely to be more useful for practical purposes
than a state of the wrong form, even if this is formally closer to the
desired state.

9. Closed-loop control

All the methods described so far have been examples of open-loop
control, in which the control sequence is designed on a computer using a
description of the physical system, and then simply implemented on it.
The underlying physical system is not used in the design of the control
sequence, except possibly in some final calibration experiments. A
radically different approach is provided by closed-loop control, in which
the physical system itself is used as the principal design tool. Rather than
calculating fidelities, which is computationally expensive, the actual
state-to-state fidelity is measured experimentally, and the control pa-
rameters are adjusted to optimize it.

Since being proposed as a route for controlling quantum systems
with laser pulses [548], the method has been widely explored
[549-553]. The approach has two major advantages over open-loop
control, both of which arise from the use of the quantum system to
study the effects of the control sequence. Firstly, simulating the control
sequence using an explicitly quantum mechanical physical system
avoids the exponential complexity blow-up inherent in classical simu-
lations [3], by in effect using the quantum system to simulate its own
behaviour [4]. Secondly, using the system itself allows the true param-
eters actually describing the system to be used, rather than approximate
measured values, and uses the control fields actually applied, rather
than those requested. If the initial state can be easily prepared and the
final state easily characterised, then measuring state-to-state fidelities is
straightforward, and with the technologies normally used it is possible
to apply thousands or even millions of trial control sequences to the
system every second. More recently it has been suggested that closed-
loop feedback can be combined with open-loop GRAPE control to get
the best of both approaches [554].

Closed-loop quantum control has been less frequently applied in
NMR, although it has been used in the design of an NMR gyroscope using
optical readout [555] and within NMR QIP for the preparation of Bell
states [174] and for quantum metrology [270]. The achievable repeti-
tion rate is usually quite slow with NMR, as the long relaxation times
limit the rate at which initial states can be prepared. The ensemble na-
ture of the NMR readout process is an advantage, but this is also the case
in some other implementations.

The most important weakness of closed-loop optimization is that it is
really only suitable for state-to-state fidelities, and cannot easily be
generalized to design true unitary transformations. To do the latter re-
quires finding the state-to-state fidelity for an exponentially large
number of initial states that span the basis of dimension 29 for a system
with g qubits. This is not quite as bad as performing full quantum process
tomography [556,557], but it remains a very challenging process for
systems with more than a few qubits.

9.1. Randomized benchmarking

Although quantum process tomography takes too long to be useful in
closed-loop control, it has been demonstrated for assessing the perfor-
mance of control sequences in simple cases [128,203]. As for quantum
state tomography, methods have been developed to make the process
more efficient [163,166,225,254,558], but it remains a challenging task,
and it is desirable to find some simpler quality measure.
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One popular approach is randomized benchmarking [559,560],
which aims to estimate the relevant fidelity of a set of quantum logic
gates for implementing complex quantum networks by applying long
sequences in random orders. Note that the method cannot be applied to
characterize a single gate, and more general questions have been raised
about the meaning and value of such measurements [561], especially in
the presence of correlated (non-Markovian) errors [562,563].

The method has been demonstrated on NMR implementations of
three qubit [293] and four qubit [329] systems, and has also been used
to monitor calibration errors in electron spin resonance [564]. It is
possible to combine randomized benchmarking with partial quantum
process tomography when more detailed information is desired [144].
Other methods for estimating average fidelities have also been explored
[353].

10. Refocusing networks

The use of optimal control methods opens up very considerable
freedom in the design of experiments to implement quantum algorithms.
Conventionally an algorithm will be written as a network of logic gates,
which can then be compiled into a longer network of simpler one- and
two-qubit logic gates, forming a universal set [92]. All that is then
necessary is to implement a small number of logic gates, spanning the
universal set.

This might not, however, be the best way to proceed, and it is
common for experimentalists to design optimal control sequences which
directly implement more complex gates, such as the Toffoli gate [285],
or more exotic gates such as the partial SWAP [341]. Similarly, one can
design a control sequence which implements a small network of more
basic gates in one go, or even implement an entire algorithm in one
control sequence [262]. This final approach can, however, become
illegitimate, with all the work of the algorithm actually being done by
the compiler [565].

At the other extreme it can be useful to restrict oneself to using only
single-qubit gates and free evolution under the drift Hamiltonian [358],
essentially equivalent to using pulses and delays in conventional NMR.
This greatly simplifies the GRAPE problem, as it is only necessary to
design gates which act selectively on individual spins, or on groups of
spins, leading to much shorter pulses than those designed to implement
controlled logic. Two-qubit gates are implemented through periods of
free evolution under a Hamiltonian containing only single spin z terms
and two-spin 2z interactions. During this time no RF is applied, reducing
the scope for error. As well as being demonstrated in NMR systems
containing 4, 7, and 12 qubits, simulations have been performed in
fictional square two-dimensional lattices containing 16, 36, and 100
qubits, suggesting that the method can be scaled to very large systems
[358].

Within this approach it becomes very important to find methods for
designing efficient spin echo sequences that sculpt the drift Hamiltonian
into a more desirable form. The conventional NMR approach of nested
spin echoes is adequate for small systems, but becomes unwieldy above
a handful of spins [28]. Fortunately far more efficient methods exist.
These methods are all designed to select or to rescale couplings within
an extended network as efficiently as possible, while simply refocusing
all single spin offset frequencies (chemical shifts). When single qubit 2z
rotations are required, for example to turn coupling gates into
controlled-phase gates [94], this can be easily achieved: applying two
180° rotations around axes in the xy-plane that are separated by a phase
angle § is equivalent to performing a z-rotation through an angle 24,

1805, 180, = 2(¢, — ¢1),, (87)

which can be interpreted as an Aharonov—-Anandan phase [566]. This
approach is far more convenient than the conventional composite z
rotation [567], as it can be combined with the refocusing network by
simply changing the relative phase of two refocusing pulses.
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The most basic task in Hamiltonian sculpting is to refocus all the
chemical shifts and all but one of the couplings, so that the effective
evolution is under the single retained coupling. In a two-spin IS system
this can be achieved by applying 180° pulses to both spin I and spin S at
time t/2, half way through the evolution period t. For completeness, a
second pair of 180° pulses should be applied at the end of the evolution
period, although in conventional NMR this is frequently omitted.

The way to understand this spin echo [568] is that 180° pulses
reverse the sign of the chemical shift evolution, so that evolution in
opposite directions for two equal times causes it to cancel overall, but as
the pulses are applied to both spins the zz coupling is reversed twice, and
so left unchanged. In a three spin ISR system it becomes necessary to add
180° pulses at times t/4 and 3t/4, dividing the individual evolution
times in two again. In a four spin ISRT system these times would be
subdivided yet again, with four 180° pulses applied to spin T at times
corresponding to odd multiples of t/8. Clearly the process can be
extended to any number of spins, but this approach will result in an
exponential growth in both the number of time periods and the number
of 180° pulses as the number of spins is increased.

10.1. Walsh-Hadamard patterns

Fortunately this naive approach is not the best way to tackle large
numbers of spins. Instead, more efficient refocusing schemes can be
devised [569-571], based on the properties of Hadamard matrices, and
requiring a number of time periods that scales only linearly with the
number of spins, and a number of pulses that scales only quadratically.
These methods are best described using Walsh-Hadamard matrices,
where each row is a Walsh function [572]. These are only defined for
dimensions equal to a power of two, while more general Hadamard
matrices can be defined for most multiples of 4 [569]. They differ from
the standard Hadamard matrices used in QIP [10] in the rows not being
normalised, and the ordering of the rows being different.

A Walsh function WY is defined by a vector with length N equal to a
power of 2 and with all the entries set to +1. For every strictly positive
integer n < N the vector WY has half the entries set to +1 and half set to
—1, with the entries arranged to create n regularly spaced sign changes
along the row, while for the special case of W} all the entries are + 1, so
there are no sign changes, as expected for n = 0. For the case N = 4 the
Walsh-Hadamard matrix contains the four rows listed in Fig. 10.

From now on the superscript value of N, which specifies the number
of columns, will be dropped, leaving only the subscript n indicating the
number of sign changes. The value of N is specified implicitly, being
equal to the smallest power of 2 larger than the highest Walsh number
considered. The Walsh functions can be considered as digital equivalents
of sine and cosine functions, and are sometimes called sal (for functions
with odd parity around the middle) and cal (for functions with even
parity) [572], but treating them as a single basis set is more useful here.

Wg 41 +1 +1 +1
w41 +1 I -1 —1
Wy +1 I -1 : -1 I +1
wi 41 I -1 I +1 I -1

Fig. 10. The four Walsh functions WJ‘-' and the patterns of 180° pulses which
generate them. Note that pulses are applied whenever the function changes
sign. The pulses shown in grey are not necessary to generate the desired
modulation, but are required to return the effective Hamiltonian to its
initial sign.
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A single spin z interaction can be refocused by ensuring that its
pattern of evolutions corresponds to a Walsh function other than W,
which can itself be achieved by applying a 180° pulses at points corre-
sponding to sign changes, as shown in Fig. 10. The zz coupling between
two spins will evolve with a pattern described by the product of the two
corresponding Walsh functions, which is itself a Walsh function given by

WyoW, = Wy (88)
where the - symbol indicates element-wise multiplication, sometimes
called the Schur product [573], and the & symbol indicates bitwise
addition modulo 2. For example, WoocW3 = W1, which is easily verified
directly.

Since m @ n equals 0 if and only if m = n, this means that all cou-
plings will also be refocused unless two spins experience the same pul-
ses, in which case the coupling will be retained at full strength. Thus the
optimal way to sculpt the drift Hamiltonian to isolate a single coupling is
to assign the two coupled spins to the pattern W; and all other spins to
successively higher numbered W,.

10.2. Time optimal refocusing

The procedure above can be used to assemble a set of one-qubit z and
two-qubit 2z interactions by isolating each coupling in turn and imple-
menting single qubit rotations using Eq. 87 to choose appropriate rela-
tive phases for two 180° pulses. However, although each individual step
is optimal this will not normally achieve the desired evolution in the
shortest possible time, as it is sometimes possible to retain several
different coupling interactions in parallel.

The simplest case where this cannot be achieved is provided by a
system of three coupled spins. Here it is simple to design refocusing
sequences which retain any one of the three couplings between the
spins, while refocusing the other two, but it is impossible to retain two
couplings while refocusing the third. Thus to achieve coupling evolution
under two couplings it is necessary to perform separate evolutions under
each coupling, applying two refocusing sequences back-to-back. In
larger spin systems, however, it is possible to select certain subsets of
couplings: for example, in a system of four coupled spins it is easy to
simultaneously retain couplings between spins 1 and 2, and between
spins 3 and 4, while refocusing everything else.

Finding the time-optimal refocusing pattern is not a trivial problem,
but it can be accomplished using methods from linear programming
[95]. The method starts by assigning spins to Walsh patterns with
numbers given by successive powers of 2. This guarantees that every
one- and two-spin interaction will be assigned to a unique Walsh patten,
and so they can all be controlled independently. Linear programming
then seeks a set of evolution times which achieves the desired overall
evolution in the shortest possible time, subject to the constraint that all
individual times must be non-negative. In practice it is more stable to use
time symmetrised solutions, which automatically remove all single qubit
terms, and then reintroduce these through phase shifts [95].

Linear programming is a practical solution for systems up to around
20 spins, after which the time required to find solutions, which grows
exponentially with the number of spins, becomes impractical. This is
unlikely to prove an important restriction as NMR QIP systems larger
than this appear impractical for other reasons [28]. However if neces-
sary it is possible to use approximate methods to locate near-optimal
solutions in a much shorter time, with only polynomial time scaling,
and this has been demonstrated for simulated systems of up to 125 spins
[95].

10.3. Engineered networks

If very large devices are ever implemented using NMR QIP or related
techniques then it is likely that these will be engineered systems, rather
than natural molecules. A simple model is to assume that the spins form

70

Progress in Nuclear Magnetic Resonance Spectroscopy 140-141 (2024) 49-85

a two-dimensional square array, with couplings only between near
neighbours [358]. For the case of a square array with only nearest-
neighbour couplings there exists a simple constructive algorithm for
designing near-optimal refocusing networks in a time which is linear in
the number of spins, and so scalable up to arbitrary sizes [574]. The
resulting patterns are never worse than a factor of two slower than the
true time-optimal solutions, and are robust to the presence of next-
nearest-neighbour couplings. Related ideas have been explored in
superconducting qubits [575].

11. Dynamical decoupling

Dynamical decoupling [576-578] refers to a family of methods for
removing unwanted interactions between a quantum system and its
environment, ultimately built upon the Hahn spin echo [568] and
methods for coherent averaging [579]. Although the term sounds very
similar to decoupling in NMR, it differs from it in one central way: the
control pulses are applied to the system, rather than to the environment.
The ultimate aim is to retain the state of a qubit unchanged as far as
possible, producing a reliable memory [464].

Both decoupling and dynamical decoupling seek to remove un-
wanted interactions by applying control sequences which cause spin
echoes. If the interactions were static and local then a single spin echo
would suffice, but noise can cause these interactions to fluctuate, while
additional strong interactions within the environment can cause infor-
mation to spread out beyond the original spin pair. For this reason it is
necessary to apply spin echoes repeatedly, ideally rapidly compared
with the fluctuation rate and compared with the sizes of the interactions
within the environment. In conventional NMR the environment is
frequently dominated by spins of a different nuclear species to the sys-
tem, and it is practical to apply the control sequences to the environment
spins, decoupling them from the system [580-583]. In general, however,
the environment can be far more varied, and may be uncontrollable, in
which case control pulses have to be applied to the system itself. This is
familiar within conventional NMR as the CPMG spin echo train
[584,585].

This conceptual difference leads to significant practical differences.
Because pulses are applied to the system itself there is a danger of
dephasing due to inhomogeneity in the RF field. For this reason it is
important that the 180° pulses are designed to be as accurate as possible
in the presence of systematic errors, and that they are designed to
perform well as general rotors, and not just as inversion pulses as is the
case for conventional decoupling. Similarly, any phase sequence which
is applied must ensure that the quantum state is returned as accurately
as possible to its original state at the end of the sequence. Note that even
in the absence of errors the qubit will only return to its initial state at
certain points in the decoupling cycle, and so the quality of dynamical
decoupling can only be properly assessed at the end of a cycle, or at least
of a shorter sub-cycle, just as the quality of CPMG refocusing should only
be considered after an even number of 180° pulses.

There are three significant features that need to be considered when
designing a dynamical decoupling sequence: the spacing between the
180° pulses, the design of individual pulses, and any phase modulation
which is applied to successive pulses. The choice of spacing depends on
the noise spectrum of the interaction to be refocused. If the interaction is
static then it suffices to apply a single pair of spin echoes, each of which
refocuses the undesired interaction during its own echo period and
which in combination act as an identity operation. If, however, the
interaction is time varying, for example due to diffusion [376] or
chemical exchange [586], then the interaction is only effectively sup-
pressed if the 180° pulses are applied rapidly in comparison with the
variation [587].

This dependence of suppression of an interaction on pulse spacing
can be used to measure the spectrum of the interaction, or to distinguish
between systems according to their sizes [588,589], but it may simply be
desired to suppress the interaction as far as possible. The obvious
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approach is to apply the echoes as fast as possible, culminating in
continuous dynamical decoupling, in which pulses are applied back to
back, just as they normally are in conventional decoupling. In practice
the performance of rapid dynamical decoupling initially improves as the
pulse spacing is reduced, but beyond a certain point the damaging ef-
fects of errors in the pulses dominate over improved suppression, and
the best performance is normally seen for some small but non-zero pulse
spacing, as discussed in Section 11.1. It can also be desirable to keep
space between pulses in order to reduce the total RF power necessary
[590].

Surprisingly, the best performance is not always seen with evenly
spaced echoes. Uhrig dynamical decoupling, discussed in Section 11.2,
involves a carefully chosen set of unequal pulse spacings. This result was
described as “the first case of this framework [QIP] enabling magnetic
resonance (MR) applications” [591], and is certainly one of the most
relevant insights from QIP for conventional NMR.

11.1. Rapid dynamical decoupling

With rapid dynamical decoupling it is important to minimise the
effects of systematic errors in the driving fields on the state of the sys-
tem, through a mixture of phase sequences and composite pulses [464].
For simplicity I will consider the case of a single spin in the presence of
phase noise, due to variations in the local magnetic field strength. If
these variations arise from B, inhomogeneity they will be static, unless
molecular motion causes them to fluctuate. If they arise from couplings
to other spins, then fluctuations can also occur due to relaxation of the
coupling partners. Whatever the cause, the effect can be modelled as an
additional z interaction, which varies both across the ensemble and in
time. Spin states along z will be unaffected, but states in the xy plane will
be dephased by the interaction. Variation across the ensemble can be
suppressed by a simple spin echo, but variation in time requires a series
of echoes, naively with a spacing short compared with the timescale over
which the interaction varies.

This long sequence of spin echoes requires a correspondingly large
number of 180° pulses, and if these are not perfect then errors, such as
pulse strength or duration errors and off resonance effects, will build up.
However, it is a remarkable feature of the CPMG sequence that these
errors largely cancel out on even-numbered echoes for initial states
aligned along the pulse direction. Specifically, if the 180° pulses are
applied along x, corresponding to Not gates, and the initial spin state is
also aligned along x, then a single spin echo gives a signal which is not at
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full strength but instead is reduced quadratically by both pulse strength
errors and off resonance effects. If the initial spin state is aligned along y
or z then the spin echo causes the state to be inverted, once again with
quadratic errors. On the second echo, however, the error for a state
initially along x is reduced to fourth order, while states along y or z are
returned to their original direction but retain the quadratic error terms.
Related effects are seen in spin locking experiments [592].

For this reason a CPMG sequence is much better at preserving qubits
in one direction (aligned with the control field) than any other. If the
pulses are instead applied alternately along +x then initial states along y
now exhibit only fourth order error dependence, while x and z show
quadratic errors. Note that states initially along z are naturally invul-
nerable to phase noise, and so the effects of the CPMG sequence are
purely damaging in this case. More complex behaviour can arise in more
realistic situations [593,594], but the broad conclusions are unaffected.

One solution is to use a more complex phase sequence, such as XY-4
[595,596], in which the 180° pulses are applied alternately along x and
y. In this case the initial state is only restored after every fourth pulse,
but the error tolerance is greatly improved, with fourth order errors for
initial states along x and y and sixth order errors for initial states along z.
As a consequence, XY-4 dynamical decoupling is moderately effective at
preserving all initial states even for large numbers of echoes [464], as
shown in Fig. 11.

To gain further improvements one could use a longer sequence, such
as XY-8 [465,597,598], but an alternative approach is to replace the
180° pulses with composite pulses [599]. For use with conventional
decoupling, composite pulses should be optimised to act as inversion
pulses, but for dynamical decoupling it is important that the pulses act as
universal rotors, sometimes called class-A composite pulses, which
perform well for all initial states [444]. A particularly useful group of
composite 180° pulses is obtained by using an odd number of 180°
pulses with carefully chosen phases, particularly when these phases are
chosen to be time symmetric [394]. Among such pulses the sequence

1803 1809 1804y 180, 1803 (89)

which is sometimes called the Knill pulse [464,465] is particularly
suitable; note that as usually described this does not implement a Nor -
gate, but this can be remedied by offsetting all the phases by 210° [394]
to give

180240 180,19 180309 180519 180,49- (90)
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Fig. 11. Simulated performance of three different approaches to rapid dynamical decoupling: (a) CPMG, (b) XY-4, and (c) KDD4. The plots show a fidelity measure
averaged over initial states along x,y, and 2, appropriate for a qubit memory, after a total of 180 spin echoes, in the presence of both pulse strength errors € and off-
resonance effects f. Fidelity contours are drawn at six infidelity levels, logarithmically spaced between 10~! and 107, and control errors cover a range of +10%,
parameterised as fractions of the driving field strength [394]. CPMG only performs well when control errors are negligible, reflecting the poor preservation of
magnetisation perpendicular to the control fields, but the XY-4 sequence is a vast improvement. A similar gain is seen for KDD4 (that is, using the Knill pulse phases
as an inner phase modulation cycle with XY-4 outside this to give a twenty-step cycle) where only the two highest contours are visible. If the Knill pulse is replaced by
a nine pulse sequence, as described in the text, the fidelity is above the highest contour (infidelity below 10-°) across very nearly the entire range conside.red

(not shown).
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This pulse performs a nor gate with tolerance of both pulse strength
errors and off-resonance effects, and unlike some alternatives has good
tolerance of simultaneous errors [394].

Composite pulses of this kind can be used in two different ways. The
obvious approach is to replace each 180° pulse in a decoupling sequence
with a composite pulse, but for the Knill pulse this increases the number
of pulses used, and thus the total power applied, by a factor of five,
unless the spacing between the refocusing pulses is increased to
compensate. Alternatively, the spacing can be left unchanged, and the
phases of the Knill pulse imposed as a phase cycle. This must then be
combined with XY-4 phase cycling to get a complete cycle of length 20.
This second approach, sometimes called Knill dynamical decoupling
[464,600,601], is the most effective.

This final approach could in principle be extended by using even
more effective composite pulses, such as the sequence of nine 180°
pulses with phases

ap,p,f—n2p—2a f—mxp pa 91)
where

B = 2a+ arccos| — (1 + 2cosa) /2] 92)
and

a = —arccos[(4 — v/10) / 4], (93)

so a ~—77.9° and f =~ —20.6°, which has exceptional tolerance of both
pulse strength errors and off-resonance effects [394]. However its per-
formance in practice has yet to be explored.

It is also possible to combine dynamical decoupling with optimal
control [599,602], replacing hard pulses with shaped pulses; pre-
liminary explorations suggest that this will be a promising approach
[603].

11.2. Uhrig dynamical decoupling

The calculations shown in Fig. 11 assumed that the dephasing being
refocused is unknown but constant during the decoupling period, or
equivalently that it varies across the ensemble of spins being observed
but does not vary in time. If this were in fact the case it would not be
necessary to use rapid decoupling, as a single spin echo would be suf-
ficient to refocus such static dephasing. It might be desirable to use two
spin echoes, in order to restore the original state, or to use four spin
echoes to permit the use of the XY-4 phase sequence, but there is no
reason to perform large numbers of echoes.

This changes if the dephasing varies with time. The original CP
(method B) [584] and CPMG [585] sequences were designed to tackle
losses due to diffusion within magnetic field gradients, and in this case
the conventional approach is to apply evenly spaced echoes as rapidly as
possible. However, dephasing noise can arise for a variety of reasons,
and the assumption that even spacing is always best is incorrect. An
early result showed that concatenated dynamical decoupling could be
more effective than the standard periodic approach [604,605], but other
than placing some pulses back-to-back this is still built around even
spacings, and ultimately achieves better performance by applying pulses
very rapidly.

A more radical departure is Uhrig dynamical decoupling [606,607],
which starts by assuming that the number of refocusing pulses will be
small, and asking how best to separate them. The original result assumed
a particular model for dephasing noise, but was subsequently shown to
apply more generally for slowly varying noise [608,609]. If a total time
period T is to be divided into spin echoes by n pulses then the optimal
times for these pulses are given by

_man? 7
t; = Tsin <—2n n 2) (94)
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where j runs from 1 to n. For the case n = 2 this places pulses at T/4 and
3T/4, reproducing the standard periodic pattern, but for higher n the
pulses are concentrated towards the start and end of the time period. The
case n = 4 is shown in Figs. 12 and 13: for a periodic pattern such as
CPMG or XY-4 pulses are placed at odd multiples of T/8, producing 4
echoes of length T/4, but for Uhrig decoupling the first and last echoes
are shortened to 0.19T while the middle echoes are lengthened to 0.31T.

The conventional approach is designed to refocus a constant offset,
but will also refocus a frequency offset which varies linearly with time:
indeed a set of symmetrically arranged pulses will refocus any offset
variation which is an odd function of time. However an offset which
varies quadratically with time is not refocused, but results in an overall
buildup of phase. (The offset functions shown in Fig. 12 are shifted
Legendre polynomials, which are mutually orthogonal, and so the
quadratic function is a purely quadratic variation, with no constant or
linear term.) By contrast, choosing the pulse spacing according to
Uhrig’s formula leads to all three terms being refocused.

Uhrig decoupling can be understood by considering the noisy
dephasing Hamiltonian in a toggling frame generated by the pattern of
180° pulses. The noise can be decomposed into components of different
frequencies, and while the static component will be cancelled by any
pattern of echoes, other frequencies will only be directly cancelled by
echoes which are stroboscopic with that frequency. Uhrig decoupling
considers the overall degree of suppression for the whole sequence of
echoes as a function of frequency, and expands the response as a Taylor
series around zero-frequency. It can be shown [591,610] that the times
in Eq. 94 set all the leading terms in this expansion to zero, resulting in
good suppression in a broad band around zero-frequency. The truly
optimal approach depends on the precise spectrum of the relevant noise
sources [611]. The original analysis assumed instantaneous refocusing
pulses, but the effects of finite pulse width can be included [612].

Uhrig decoupling has been demonstrated experimentally in a range
of systems, including NMR [591,613-617], electron spin resonance
[618,619], and trapped ions [620,621], and in general the expected
benefits are seen. One significant disadvantage is that all pulses are
applied with the same phase, and thus the method suffers from the same
sensitivity to pulse errors as seen in CPMG, although the number of
pulses used can be significantly smaller. This is not always important in
conventional NMR, as the initial state of the magnetization is often
known beforehand, and the pulses can be aligned with that state, but it is
a more significant issue for quantum memories, which must work for all
states. It is, of course, possible to use composite pulses to tackle this, but
this must be done by simply replacing each pulse in the Uhrig sequence
by a composite pulse, rather than using the pulse design to create an
inner phase cycle. Optimized pulses have also been specifically designed
for use with Uhrig dynamical decoupling [622-625]. These ideas are
now being combined with methods from shaped pulse design to develop
excitation sequences which are robust to time-varying interactions
[626].

12. Conclusions

As was predicted in the early days of the field [26-29,97], NMR has
not led to a general scalable implementation of a quantum computer,
and in recent years it has ceased to lead the field in the implementation
of small demonstration devices. Superconducting quantum computers
[627] are now available with many more qubits than are available in
NMR implementations [518,628], while ion trap implementations can
beat NMR in speed and precision [629,630], and reconfigurable atom
arrays have been used to demonstrate multiple logical qubits using
advanced error correcting codes [631]. Despite this NMR implementa-
tions can still in practice compete with other approaches in at least some
cases [143].

As was also predicted the main role of NMR QIP has become a route
for technology transfer, in both directions [29,30]. The long-standing



J.A. Jones Progress in Nuclear Magnetic Resonance Spectroscopy 140-141 (2024) 49-85

o o _ o -
(@ b) ©)
\ n w | on i
(=) (=} (=)
v 4 4
o o o
(=) (=} (=)

0.5

o I S S

1.0
.
™
—

<
—
]

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

Fig. 12. Simulated action of spin echoes with conventional and Uhrig spacings. Plot (a) shows three different models for the offset frequency which needs to be
refocused: the red dotted line shows a constant offset, the green dashed line shows an offset which varies linearly with time, and the blue solid line shows quadratic
variation. Plot (b) shows the accumulated phase for a conventional echo sequence, with z pulses at the positions indicated by black arrows causing the direction of
phase accumulation to be reversed. The constant and linear offsets are refocused but an overall phase remains from the quadratic offset. Plot (c) shows the accu-
mulated phases with Uhrig pulse spacing, and all three offsets are now refocused.
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Glossary

BBI: broad band number one

BFGS: Broyden-Fletcher—Goldfarb-Shanno

BURP: band-selective uniform response pure-phase

CCCP: concatenated composite pulse

CP: Carr-Purcell

CPMG: Carr-Purcell-Meiboom-Gill

CRAB: chopped random basis

ENDOR: electron nuclear double resonance

GOAT: gradient optimization of analytic controls

GRAPE: gradient ascent pulse engineering

GRAWME: gradient ascent without matrix exponentiation
HMQC: heteronuclear multiple quantum coherence

HSQC: heteronuclear single quantum coherence

L-BFGS: limited memory Broyden-Fletcher-Goldfarb-Shanno
MR: magnetic resonance

NMR: nuclear magnetic resonance

QIP: quantum information processing

RF: radio frequency

SCROFULOUS: short composite rotation for undoing length over and under shoot
TROSY: transverse relaxation optimized spectroscopy
WALTZ: wideband alternating-phase low-power technique for zero-residual-splitting
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